
Performance Modelling of
Distributed Stream Processing

Topologies

Thomas Cooper

Submitted for the degree of Doctor of
Philosophy in the School of Computing,

Newcastle University

August 2020

© 2020, Thomas Cooper



For Amanda and Gillian



Abstract

Distributed stream processing systems (like Apache Storm, Heron and Flink) allow the
processing of massive amounts of data with low latency and high throughput. Part of the
power of these systems is their ability to scale the separate sections (operators) of a stream
processing query to adapt to changes in incoming workload and maintain end-to-end
latency or throughput requirements.

Whilst many of the popular stream processing systems provide the functionality to scale
their queries, none of them suggest to the user how best to do this to ensure better
performance. The user is required to deploy the query, wait for it to stabilise, assess its
performance, alter its configuration and repeat this loop until the required performance is
achieved. This scaling decision loop is intensely time consuming and for large deployments
the process can take days to complete. The time and effort involved also discourage users
from changing the configuration once one is found to satisfy peak load. This leads to the
over-provisioning of resources.

To solve these issues a performance modelling system for stream processing queries is
required. This would allow the performance effect of changes to a query’s configuration to
be assessed before they are deployed, reducing the time spent within the scaling decision
loop. Previous research on auto-scaling systems using performance models has focused
either; on queueing theory based approaches, which require small amounts of historical
performance data but suffer from poor accuracy; or on machine learning based approaches
which have better accuracy, but require large amounts of historical performance data to
produce their predictions.

The research detailed in this thesis is focused on showing that an approach based on
queueing theory and discrete event simulation can be used, with only a relatively small
amount of performance data, to provide accurate performance modelling results for stream
processing queries.

We have analysed the many aspects involved in the operation of modern stream processing
systems, in particular Apache Storm. From this we have created processes and models
to predict end-to-end latencies for proposed configuration changes to running streaming
queries. These predictions are validated against a diverse range of example streaming
queries, under various workload environments and configurations. The evaluations show
that for most query configurations, our approach can produce performance predictions with
similar or better accuracy than the best performing machine learning based approaches,
over a more diverse range of query types, using only a fraction of the performance data
those approaches require.

iii



iv



Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis has
previously been submitted for a degree or any other qualification at Newcastle University
or any other institution.

Thomas Cooper

August 2020

v



vi



Acknowledgements

I would like to start by thanking my supervisor, Dr. Paul Ezhilchelvan, for his advice,
patience, good humor and honesty (even if sometimes I didn’t want to hear it). It has
been a journey.

Thanks to my fellow MSc Computer Science students for making my introduction to the
field so much fun and for their continued friendship and support. Special thanks to Soo
Darcy for her excellent proof reading skills.

My thanks to the staff of the Newcastle University Centre for Doctoral Training (CDT) in
Cloud Computing for Big Data: to Drs. Paul Watson and Darren Wilkinson for leading
the CDT and taking a chance on a masters student with some funny ideas; to Drs. Matt
Foreshaw and Sarah Heaps for giving me a great start and support along the way; and
thanks especially to Oonagh McGee and Jen Wood, without whom chaos would have
reigned.

Thanks to Karthik Ramasamy, Ning Wang and all the Twitter Real Time Compute team
for giving me a chance to test my ideas and learn all I could from them.

Thanks to my fellow CDT PhD students for sharing their knowledge, experience and
friendship. Special mentions go to Naomi Hannaford and Lauren Roberts for being far
more patient with the loud guy sitting next to them than they needed to be; and to Dr.
Hugo Firth who is a good friend and fellow shaver of yaks.

Thank you to my family, who have supported me throughout my (multiple) academic
endeavours: to my father and grandfathers, for giving me my love of technology; and to
my mother Amanda, who gave me the means to start my journey toward this PhD and
who never wavered in her belief in me.

Finally, love and thanks to Gillian, without whom none of this would have been possible
and who already knows everything I want to say.

vii



viii



Contents

Glossary 1

1 Introduction 7
1.1 Distributed Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Topology Scaling Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Model-Based Scaling Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Faster convergence on a valid plan . . . . . . . . . . . . . . . . . . . 12
1.3.2 Feedback for scheduling decisions . . . . . . . . . . . . . . . . . . . 13
1.3.3 Pre-emptive scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 N-version scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Research aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Distributed Stream Processing Architecture 19
2.1 Choosing an Example System . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Apache Storm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Storm Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Storm cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Parallelism in Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Executors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Worker processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Stream Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Topology Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Query plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.3 Logical plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.4 Physical plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Internal Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.2 Queue input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.3 Arrival into the queue . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.4 Timer flush interval completes . . . . . . . . . . . . . . . . . . . . . 32
2.7.5 Service completes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



x CONTENTS

2.8 Tuple Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.1 Executor tuple flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.2 Worker process tuple flow . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Guaranteed Message Processing . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9.1 Acker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9.2 Tuple tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Topology Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.11 Rebalancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.11.1 Worker processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11.2 Executors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12.1 Tumbling windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12.2 Sliding windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.12.3 Windowing in Apache Storm . . . . . . . . . . . . . . . . . . . . . . 44

2.13 Storm Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.13.1 Accessing metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.13.2 Component metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.13.3 Queue metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.13.4 Custom metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.13.5 Metrics sample rates . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Related Work 53
3.1 Threshold Based Auto-scaling . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Performance Model Based Auto-scaling . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Queueing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Topology Performance Modelling 67
4.1 Performance Modelling Procedure . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Modelling the topology . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Tuple flow plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Elements to be modelled . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Executor Latency Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Queue simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Executor simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Incoming Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Routing Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Stream routing probability . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Global routing probabilities . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Predicting Routing Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.1 Predicting stream routing probabilities . . . . . . . . . . . . . . . . 81
4.5.2 Predicting global routing probabilities . . . . . . . . . . . . . . . . 89

4.6 Input to Output Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.1 Calculating input to output coefficients for source physical plans . . 91

4.7 Predicting Input to Output Ratios . . . . . . . . . . . . . . . . . . . . . . 91
4.7.1 Input streams containing only shuffle groupings . . . . . . . . . . . 91



CONTENTS xi

4.7.2 Input streams containing at least one fields grouping . . . . . . . . 92
4.8 Arrival Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8.1 Predicting executor arrival rates . . . . . . . . . . . . . . . . . . . . 93
4.8.2 Predicting worker process arrival rates . . . . . . . . . . . . . . . . 94

4.9 Service Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9.1 Executor co-location effects on service time . . . . . . . . . . . . . . 95

4.10 Predicting Service Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10.1 Weighted average service time . . . . . . . . . . . . . . . . . . . . . 95

4.11 Transfer Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.11.1 Predicting transfer times . . . . . . . . . . . . . . . . . . . . . . . . 97

4.12 Tuples Per Input List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.12.1 Processing batch size estimation . . . . . . . . . . . . . . . . . . . . 99
4.12.2 Transfer list size estimation . . . . . . . . . . . . . . . . . . . . . . 102
4.12.3 Input list size estimation . . . . . . . . . . . . . . . . . . . . . . . . 109

4.13 End-to-end Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.13.1 Windowing delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.13.2 Executor send thread . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.13.3 Worker process send thread . . . . . . . . . . . . . . . . . . . . . . 114
4.13.4 Worker process receiving logic . . . . . . . . . . . . . . . . . . . . . 114
4.13.5 Predicting complete latency . . . . . . . . . . . . . . . . . . . . . . 115

4.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Evaluation 117
5.1 Modelling System Implementation . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Evaluation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Example Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Linear topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Join and split topology . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.3 Test topology summary . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.4 Test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.5 Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Arrival Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.1 Stream routing probabilities . . . . . . . . . . . . . . . . . . . . . . 125
5.4.2 Input/Output ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Executor arrival rates . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Service Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Tuple Input List Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 End-to-end Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7.1 Ground truth latency . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7.2 Validation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8.1 Arrival rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8.2 Service time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8.3 Tuple input list size . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.8.4 End-to-end latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.8.5 Factors undermining prediction accuracy . . . . . . . . . . . . . . . 162
5.8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



xii CONTENTS

6 Discussion 165
6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.1.1 Chapter 1 — Introduction . . . . . . . . . . . . . . . . . . . . . . . 165
6.1.2 Chapter 2 — Apache Storm architecture . . . . . . . . . . . . . . . 165
6.1.3 Chapter 3 — Related work . . . . . . . . . . . . . . . . . . . . . . . 166
6.1.4 Chapter 4 — Modelling approach . . . . . . . . . . . . . . . . . . . 166
6.1.5 Chapter 5 — Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.1 Additional metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.2 Workload prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.3 Routing key distribution . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.4 Service time prediction . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.5 Serialisation delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.6 Network transfer time . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.7 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.8 Resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.9 Hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.10 Estimation of error . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.11 Other DSPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 179

A Queuing Theory Primer 187
A.1 Queueing Theory Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.2 Queue Categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B Executor Simulator Implementation 191
B.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.2 Full System Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.1 Tuple list arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.2.2 Flush interval completes . . . . . . . . . . . . . . . . . . . . . . . . 194
B.2.3 Tuple completes service . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.2.4 Continuous flush operation . . . . . . . . . . . . . . . . . . . . . . . 195

B.3 Simplified System Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 196
B.3.1 Tuple list arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.3.2 Flush interval completes . . . . . . . . . . . . . . . . . . . . . . . . 197
B.3.3 Tuple completes service . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.4 Comparison of Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

C Modelling System Implementation 199
C.1 Storm-Tracer system overview . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.2 Metrics Gathering and Storage . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.2.1 Time series database . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.2.2 Custom metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
C.2.3 Cluster metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.3 Interacting with Nimbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
C.4 Topology Structure Storage and Analysis . . . . . . . . . . . . . . . . . . . 205

C.4.1 Graph database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
C.4.2 Topology graph structure . . . . . . . . . . . . . . . . . . . . . . . 207



CONTENTS xiii

C.4.3 Constructing the topology graphs . . . . . . . . . . . . . . . . . . . 209
C.5 Modelling Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.5.2 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.5.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.5.4 Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.5.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D Caladrius 215
D.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
D.2 Heron Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

D.2.1 Differences to Storm . . . . . . . . . . . . . . . . . . . . . . . . . . 217
D.3 Modelling Heron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

D.3.1 Incoming workload . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
D.3.2 Arrival rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
D.3.3 Back-pressure prediction . . . . . . . . . . . . . . . . . . . . . . . . 220

D.4 Caladrius Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
D.5 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D.5.1 Further development . . . . . . . . . . . . . . . . . . . . . . . . . . 222

E Experimental Configurations 223
E.1 Fields to Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.1.1 Experimental steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
E.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.2 Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
E.2.1 Experimental steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
E.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

E.3 Windowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
E.3.1 Experimental steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
E.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

E.4 All-in-one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
E.4.1 Experimental steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
E.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

E.5 Join and split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
E.5.1 Experimental steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
E.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



xiv CONTENTS



List of Tables

4.1 Measured routing probabilities for connections from executors of component
A to downstream tasks of component B on Stream-2. . . . . . . . . . . . . 85

4.2 Predicted SRPs for all executors of component A to the proposed down-
stream executors of component B on Stream-2. . . . . . . . . . . . . . . . 85

4.3 TRPs for the tasks of component B to the downstream tasks of component
C on Stream-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Predicted SRPs for the logical connections between executors of component
B to the downstream executors of component C on Stream-3. . . . . . . . 88

4.5 Table showing the amount of tuples, on average, in each remote transfer
map sent from an executor to the WPTQ in figure 4.11. . . . . . . . . . . . 107

5.1 Summary of the test topologies used in the performance modelling evaluation.124
5.2 The median absolute error across all experiment steps for each of the streams

in the fields-to-fields test topology. . . . . . . . . . . . . . . . . . . . . . . 126

E.1 Parallelism configuration for each step of the fields to fields test topology. . 223
E.2 Parallelism configuration for each step of the multiplier test topology. . . . 224
E.3 Parallelism configuration for each step of the windowed test topology. . . . 224
E.4 Parallelism configuration for each step of the all-in-one test topology. . . . 225
E.5 Parallelism configuration for each step of the join-split test topology. . . . . 226

xv



xvi LIST OF TABLES



List of Figures

1.1 An example stream processing topology and replication level of each operator. 8
1.2 A cluster layout for the operators of the topology shown in figure 1.1. . . . 9
1.3 The schedule → deploy → stabilise → analyse scaling decision loop with a

human user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The schedule → deploy → stabilise → analyse scaling decision loop with

an auto-scaling system included. . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 An auto-scaling system paired with a performance modelling system. . . . 12
1.6 The pre-emptive scaling process made possible by combining a performance

modelling system with an incoming workload forecasting system. . . . . . . 14

2.1 The internal structure of a worker process and executors. . . . . . . . . . . 24
2.2 Illustration of how the fixed number of component tasks ensures determin-

istic routing when component parallelism changes. . . . . . . . . . . . . . . 26
2.3 Example of the different plan types for a simple linear topology. . . . . . . 29
2.4 The Apache Storm Disruptor queue implementation. . . . . . . . . . . . . 31
2.5 Flow chart showing the sequence of operations that occur when a job (either

a tuple, list of tuples or map of tuples depending on the context) arrives at
the queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Flow chart showing the sequence of operations which occur when a flush
interval completes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Flow chart showing the sequence of operations which occur when a tuple
finishes service within the executor. . . . . . . . . . . . . . . . . . . . . . . 35

2.8 The tuple flow through the queues within each executor. . . . . . . . . . . 37
2.9 The tuple flow through the WPTQ, WPST and across the network to a

receiving worker process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10 A simple linear topology, showing the Acker component and various streams

associated with the message guarantee system. . . . . . . . . . . . . . . . . 40
2.11 Example of a tumbling window. . . . . . . . . . . . . . . . . . . . . . . . . 44
2.12 Example of a sliding window. . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.13 The topology end-to-end latency shown against the measured complete

latency in Storm (version 1.0.3 and above). . . . . . . . . . . . . . . . . . . 48
2.14 The tree produced as tuples are anchored and acknowleged, showing the

effect of delayed child tuples on the complete latency. . . . . . . . . . . . . 49

4.1 An example logical and physical path through the topology shown in figure 2.3. 70
4.2 The tuple flow plan for the simple linear topology shown in figure 2.3. . . . 71
4.3 Example topology featuring a component with multiple output streams. . . 78
4.4 Example of the SRP and GRP values for an executor from the topology

shown in figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvii



xviii LIST OF FIGURES

4.5 Example path from the topology shown in figure 4.3 showing the two distinct
fields grouping cases: shuffle only input and fields grouping input. . . . . . 82

4.6 Example topology shown in figure 4.5 but with a new topology configuration
where each component now has two executors instead of one. . . . . . . . . 83

4.7 The ETOP values for two proposed plans (centre and right) using MTOP
values from a single source plan (left). . . . . . . . . . . . . . . . . . . . . . 87

4.8 An example topology query plan showing component (D) with multiple
input and output streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Local and remote transfer paths by which tuple lists arrive at the ERQ of
executor j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 Plan types for an example linear topology runing on two worker nodes. . . 105
4.11 Example transfers within worker process 1 from figure 4.10. . . . . . . . . . 106
4.12 An example path through the tuple flow plan of the topology shown in

figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.13 Timeline for the tuple path shown in figure 4.12, comparing the predicted

end-to-end latency to the measured complete latency. . . . . . . . . . . . . 115
4.14 An example path that the ack_init message from the spout will take to the

Acker executor for the path shown in figure 4.12. . . . . . . . . . . . . . . . 116

5.1 The various components of the Storm-Tracer system. . . . . . . . . . . . . 118
5.2 Stages of the data gathering process. . . . . . . . . . . . . . . . . . . . . . 119
5.3 Schematic of the messaging framework used by the test topology. . . . . . 120
5.4 Four component linear topology with an I/O ratio of 1.0 and consecutive

fields grouped components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Probability that a given key will be chosen for the fields grouped connections.121
5.6 Three component linear topology with an I/O ratio greater than 1.0. . . . 121
5.7 Three component linear topology with an I/O ratio less than 1.0. . . . . . 122
5.8 Four component linear topology with both multiplying (I/O ratio > 1)

and windowing (I/O ratio < 1) components which have consecutive fields
grouped connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 Six component topology (all with an I/O ratio of 1.0) with a combined
stream join and split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.10 Comparison of the stream routing probability prediction error for the fields
to fields test topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.11 Median absolute error in the I/O ratio predictions for the all-in-one test
topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 Median absolute error in the I/O ratio predictions for the join-split test
topology using a simple routing behaviour. . . . . . . . . . . . . . . . . . . 129

5.13 Median absolute error in the I/O ratio predictions for the join-split test
topology using a more complex routing behaviour. . . . . . . . . . . . . . . 129

5.14 Median absolute error in the arrival rate predictions for the all-in-one topology.130
5.15 Median absolute error in the arrival rate predictions, for the join-split topology.131
5.16 Median absolute error in the service time predictions for the all-in-one

topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.17 Median relative error in the service time predictions for the all-in-one topology.132
5.18 Effect of errors in the service time on the queue soujour time simulation

with an arrival rate of 0.1 and 1.0. . . . . . . . . . . . . . . . . . . . . . . . 134
5.19 Comparison of the mean absolute error in the prediction of the input list

size into each ERQ for the all-in-one topology. . . . . . . . . . . . . . . . . 136



LIST OF FIGURES xix

5.20 Comparison of the the mean absolute error in the prediction of the input
list size into each ERQ with a flush interval of 1 second. . . . . . . . . . . 137

5.21 An example of the distribution of ground truth latency measurements for a
single experiment step of the multiplier test topology. . . . . . . . . . . . . 139

5.22 An example distribution from figure 5.21 with any measurement above the
average complete latency removed. . . . . . . . . . . . . . . . . . . . . . . 140

5.23 The measured ground truth latency for the fields-to-fields test topology
using two worker nodes with two worker processes each. . . . . . . . . . . . 141

5.24 The relative error between the predicted weighted average ground truth
latency and the average measured ground truth latency, using two worker
nodes with two worker processes each. . . . . . . . . . . . . . . . . . . . . 142

5.25 The error in the service time predictions for the fields-to-fields topology,
using two worker nodes with two worker processes each. . . . . . . . . . . . 143

5.26 The relative error between the predicted weighted average ground truth
latency (using measured parameters) and the average measured ground
truth latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.27 The measured ground truth latency for the fields-to-fields test topology
using four worker nodes with two worker processes each. . . . . . . . . . . 144

5.28 The relative error between the predicted weighted average ground truth
latency and the average measured ground truth latency, using four worker
nodes with two worker processes each. . . . . . . . . . . . . . . . . . . . . 145

5.29 The percentage mean absolute error in the complete latency predictions for
the fields-to-fields test topology, using two worker nodes with two worker
processes each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.30 The percentage mean absolute error in the complete latency predictions for
the fields-to-fields test topology, using four worker nodes with two worker
processes each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.31 The measured ground truth latency for the multiplier test topology. . . . . 147
5.32 The relative error between the predicted weighted average and average

measured ground truth latency for the multiplier test topology. . . . . . . . 148
5.33 The percentage mean absolute error in the complete latency predictions for

the multiplier test topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.34 Comparison of the measured ground truth and complete latencies for each

experiment step of the multiplier test topology. . . . . . . . . . . . . . . . 150
5.35 The measured ground truth latency for the windowing test topology. . . . 151
5.36 The relative error between the predicted weighted average and average

measured ground truth latency for the windowing test topology. . . . . . . 152
5.37 The percentage mean absolute error in the complete latency predictions for

the windowing test topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.38 Comparison of the measured ground truth and complete latencies for each

experiment step of the windowing test topology. . . . . . . . . . . . . . . . 153
5.39 The measured ground truth latency for the all-in-one test topology. . . . . 154
5.40 The relative error between the predicted weighted average and average

measured ground truth latency for the all-in-one test topology. . . . . . . . 155
5.41 The percentage mean absolute error in the complete latency predictions for

the all-in-one test topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.42 Comparison of the measured ground truth and complete latencies for each

experiment step of the all-in-one test topology. . . . . . . . . . . . . . . . . 156
5.43 The measured ground truth latency for the join-split test topology. . . . . 157



xx LIST OF FIGURES

5.44 The relative error between the predicted weighted average and average
measured ground truth latency for the join-split test topology. . . . . . . . 158

5.45 The percentage mean absolute error in the complete latency predictions for
the join-split test topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.46 Comparison of the measured ground truth and complete latencies for each
experiment step of the all-in-one test topology. . . . . . . . . . . . . . . . . 159

A.1 The standard performance measures for a queueing system. . . . . . . . . . 188

B.1 The event probabilities used in the ULT DES. . . . . . . . . . . . . . . . . 192
B.2 Elements of the executor ULT showing the state variables used in the DES. 192

C.1 The various components of the Storm-Tracer system. . . . . . . . . . . . . 200
C.2 The tuple flow plan as represented in the Neo4j graph database. . . . . . . 209
C.3 Comparison of the predicted sojoun time for the three ULT simulator

implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
C.4 Comparison of the average elapsed time to complete the number of simulated

arrivals for the three ULT simulator implementations. . . . . . . . . . . . . 213

D.1 A two container Heron cluster. . . . . . . . . . . . . . . . . . . . . . . . . . 217
D.2 The Caladrius modelling system. . . . . . . . . . . . . . . . . . . . . . . . 221



Glossary

API application programming interface.

ARIMA auto-regressive integrated moving average.

bolt The main type of component in a topology query plan. They contain the user defined
tuple processing code. Each executor assigned to a topology will run the code for a
single bolt.

CDF cumulative distribution function.

CEP complex event processing: A set of concepts and techniques for processing real-time
events and extracting information from event streams as they arrive. The goal of
complex event processing is to identify meaningful events (such as opportunities or
threats) in real-time situations and respond to them as quickly as possible.

complete latency The time taken for all child tuples, produced from a source tuple, to
be processed fully.

component The elements of a topology’s query plan. The spouts or bolts which are
defined by the user.

CPU central processing unit.

CSV comma separated values.

DAG directed acyclic graph.

DBPS distributed batch processing system.

DES discrete-event simulation: A simulation which models the operation of a system as
a discrete sequence of events in time. Each event occurs at a particular instant in
time and marks a change of state in the system. Between consecutive events, no
change in the system is assumed to occur; thus the simulation can directly jump in
time from one event to the next.

DiG directed graph.

1



2 Glossary

Disruptor queue Apache Storm’s custom queue implementation using the LMAX Dis-
ruptor data structure which allows non-blocking movement of items on and off the
queue. These queues are used throughout the Storm system in both the executor
and worker processes.

DSPS distributed stream processing system.

end-to-end latency The time taken for a tuple to traverse the entire topology from
being issued by the source spout to completing service in the final sink bolt.

ERQ executor receive queue.

ESQ executor send queue.

EST executor send thread.

ETIP estimated task input proportion.

ETOP estimated task output proportion.

executor The processing units within a topology’s logical plan. They contain the tasks
which do the actual processing of tuples and coordinate the input and output tuples
for those tasks.

GP Gaussian process.

ground truth latency The latency measure used in the evaluation experiments. It is
the time from the moment a message is pulled off the Kafka Message broker in the
spout executors of the test topology to just before being sent back to the message
broker in the final sink component of the test topology.

GRP global routing probability.

I/O input to output.

ICMP Internet Control Message Protocol.

JSON JavaScript Object Notation (JSON) is an open-standard file format that uses
human-readable text to transmit data objects consisting of attribute–value pairs and
array data types (or any other serialisable value).

JVM Java Virtual Machine.

Kappa Architecture A replacement for the Lambda Architecture which removes the
batch processing element and uses a single unified stream processing approach,
relying on a fault tolerant and accurate system to process all queries.



Glossary 3

Lambda Architecture The combination of a fast and potentially inaccurate stream
processing system, to provide rapid responses, with a periodically run batch processing
system that will provide accurate responses at a slower rate.

logical plan A representation of a topology showing how the executors assigned to each
component are connected together.

LTF local transfer function.

MAPE monitor, analyse, plan, execute.

MPC model predictive control.

MTIP measured task input proportion.

MTOP measured task output proportion.

MVA mean value analysis: A recursive technique for computing expected queue lengths,
waiting time at queueing nodes and throughput in equilibrium for a closed separable
system of queues.

OS operating system.

parallelism When used in reference to a Storm component (spout or bolt), the parallelism
of the component refers to the number of executors assigned to that component.

physical plan A representation of a topology showing how the executors assigned to
each component (spouts or bolts) are distributed across the various worker processes
which are running on the cluster of worker nodes.

QoS quality of service.

query plan A high level representation of a topology showing how the user defined
components of the streaming query are connected together. This will also show the
type of connection (stream grouping) between components.

queueing theory The mathematical study of waiting in lines or queues. From this
theory queueing models are produced so that waiting times and queue lengths can
be predicted.

RAM random access memory.

reinforcement-learning A supervised learning approach where a cost function is applied
to previous decisions in order to inform future decisions.

RMSE root mean squared error.



4 Glossary

RTM real time monitor.

scheduling The act of creating a physical plan by assigning operator replicas to workers.
This process is carried out by a scheduler implementation.

SerDes Short from of serialisation/de-serialisation and refers to the process of converting
native language objects into byte stream representations (and back again) for transfer
across a network connection..

SLA service level agreement.

sojourn time The total time spent at a queueing node, including the queue waiting time
and the service time.

SOP stream output proportion.

spout A special type of component in a topology query plan which is responsible for
receiving events from outside of the system and creating tuples to be passed into the
topology. Spouts are also responsible for acknowledging the completed processing of
source events to external systems.

SRP stream routing probability.

Storm-Tracer The name for the Apache Storm performance modelling system developed
as part of this doctoral research.

SVM support-vector-machine.

SVR support-vector-regression.

task Tasks contain the user defined tuple processing code and are used to facilitate
stream and state partitioning with topology. Multiple tasks can be housed within
an executor and the number of tasks a component has is set for the lifetime of the
topology.

topology A directed graph of operators which perform actions on a stream of continuously
arriving data.

topology configuration A set of integers indicating the parallelism hint, the number of
replicas (executors), for each component of the topology and the number of worker
processes assigned to the topology.

TRP task to task routing probability.

TSDB time series database.

tuple In mathematics, a tuple is a finite ordered sequence of elements. In Apache Storm
a tuple is the data structure which passes between the logical operators (executors)



Glossary 5

in the topology. A Storm tuple has one or more fields which are keys linking to data
values.

tuple flow plan A representation of a topology which includes all the internal Storm
elements a tuple will pass through as well as the logical operators.

ts−1 tuples per second.

tweet A short 140 (now 280) character message posted to the micro-blogging platform
Twitter (https://twitter.com). These messages can contain "hashtags" which denote
topics of interest, location information, images, videos and other meta-data. Tweets
are publicly visible by default and analytics and real-time or historic tweet feeds can
be purchased from Twitter.

ULT user logic thread.

VM virtual machine.

worker process A JVM instance which contains and coordinates the executor threads
and various internal queue implementations associated with them.

worker node A virtual or physical machine which runs one or more worker processes.

WPST worker process send thread.

WPTQ worker process transfer queue.



6 Glossary



Chapter 1

Introduction

Processing big data is not a new phenomenon in computing, it has been present since its
earliest days. The only thing that has changed is what we consider big to mean. Towards
the end of the last century, hundreds of thousands of items and multiple megabytes were
pushing the boundaries of what was possible to process. Now, thanks to research projects
like the Large Hadron Collider and the ambitions of companies like Google, trillions of
items and petabytes of data need to be processed on a regular basis.

In the past, the solution to big data issues was typically to scale vertically, where the
code is run on machines that have faster processors, more memory and/or larger storage.
However in recent years, thanks in part to the advent of cloud computing, horizontal
scaling — where computation is spread across several relatively low powered machines
— has become the norm. This has led to the emergence of many distributed big data
processing frameworks such as Google’s MapReduce (Dean & Ghemawat, 2008), Apache
Hadoop (Hadoop, 2019) and Apache Spark (Zaharia et al., 2010). These distributed batch
processing system (DBPS) allow for huge amounts of data, 20 petabytes a day or more
(Zaharia et al., 2008), to be processed. However, these systems are focused on processing
large volumes of data, not on processing high velocity data.

In recent years it is not only the size of the data that needs processing which has required
innovation, but also the rate at which this data arrives and the timeliness of operations
performed on it. Social networks, such as Twitter1, are focused on “What is happening
now?” and so need to analyse trends across the hundreds of millions of daily posts their
users produce in real time (Toshniwal et al., 2014). This real time requirement means that
batch processing systems which run daily, hourly or even every minute are not appropriate.
This has led to the development of distributed stream processing systems (DSPSs) such
as Apache Storm (Toshniwal et al., 2014), Spark Streaming (Zaharia et al., 2013) and
Apache Flink (Carbone et al., 2015).

1see: https://about.twitter.com/

7

https://about.twitter.com/


8 CHAPTER 1. INTRODUCTION

DSPSs are often combined with the DBPSs mentioned above into what is commonly
referred to as the Lambda Architecture (Marz & Warren, 2015). This architecture allows
operators to leverage the low latency of a stream processing system for queries which are
time, but not accuracy, critical and use the slower batch processing system for those queries
that require accurate results across a whole dataset. The Lambda Architecture has been
widely adopted in industry, however running two concurrent systems obviously involves
duplicated effort, additional resources and increased costs. To address this, industry
has started to move towards eliminating the batch processing elements of the Lambda
Architecture and using the stream processing system for all queries. This approach, known
as the Kappa Architecture (Kreps, 2014), requires solving several issues with the current
DSPSs around their message delivery guarantees, fault tolerance and automation. This
focus on improving stream processing systems has led to increased interest in research
related to DSPSs and their operation, which in turn provided the impetus for this PhD
research.

1.1 Distributed Stream Processing

DSPSs allow operations on streams of constantly arriving data to be distributed across a
cluster of workers (physical or virtual machines). The operators form a directed graph,
commonly referred to as a topology, which defines the sequence of operations on the
incoming data. Figure 1.1 illustrates a DSPS topology, with a source component (S) that
inserts data packets into the topology and several operators which consume these data
packets, perform operations on them and produce zero or more new data packets to be
passed downstream to the next operator in the topology.

Figure 1.1: An example stream processing topology and replication level of each operator.

If needed, operators can be replicated across the cluster of workers to reduce latency and
increase throughput. Slow operators and/or those expecting high traffic can have higher
numbers of replicas, to increase parallel processing, while fast or low traffic operators



1.2. TOPOLOGY SCALING DECISIONS 9

may require fewer replicas to keep up with the incoming data packet arrival rate. The
numbers, shown in the squares below the operators in figure 1.1, give an example level of
replication for each operator. Figure 1.2 shows an example of how the copies of each of
those operators could be distributed across a cluster of three workers.

Figure 1.2: A cluster layout for the operators of the topology shown in figure 1.1.

The creation of this operator layout on the cluster, commonly called the topology’s physical
plan, is referred to as scheduling. The physical plan of a topology can have a significant
effect on the performance of that topology. Placing replicas of two connected operators,
which send large amounts of traffic to one another, on separate worker nodes will mean
that traffic has to travel across the network, incurring additional transfer latency. Placing
high traffic operators on the same node may remove the network transfer latency between
them but, as these operators are now on the same machine, they are competing for the
same finite resources and so this may result in slower processing of the data packets.

1.2 Topology Scaling Decisions

Many of the popular DSPSs provide functionality to change the physical plan of a topology
whilst it is running. However, to the best of our knowledge, all but one2 of the mainstream
DSPSs3 have no mechanisms to automatically scale or reschedule their resources in response
to the size and rate of the incoming data (the topology’s incoming workload). This means
that the current DSPSs rely on a human administrator’s domain knowledge and experience
in order to scale a topology to the correct size to meet peak incoming workload. The
administrator will typically engage in an iterative approach using the following steps:

1) Choose the parallelism of each topology operator.

2Apache Heron — see chapter 3 for more details
3Apache Storm, Spark or Flink



10 CHAPTER 1. INTRODUCTION

2) Use their DSPS’s scheduler to create a physical plan for their chosen configuration.
Certain schedulers may give additional control over worker node resources and
operator replica placement as well as operator parallelism.

3) Deploy that physical plan to the DSPS cluster.
4) Wait for the deployment to finish and for the data flow through the topology to

stabilise. Depending on the size of the topology this can take a significant amount
of time and is often overlooked in DSPS design (Heinze, Jerzak, et al., 2014).

5) Wait for a further period to gather performance metrics. This can involve waiting
for a sufficiently high input workload to arrive (which may require waiting for a
specific time of day) or the creation of an accurate test load generator.

6) Assess if the topology performance is meeting the specified targets.

This schedule → deploy → stabilise → analyse loop (see figure 1.3) is a time intensive
process. In the worst case, for large, complex and high-traffic topologies (like those used in
production environments), finding a configuration that will maintain performance in the
presence of peak input workload can take several weeks to complete (Graham et al., 2017).

Scheduler

3 2 3 22

Physical Plan

DSPS

Topology Configuration

DeploySchedule

Stabilise

Analyse

User

Figure 1.3: The schedule → deploy → stabilise → analyse scaling decision loop with a
human user.

Scheduling a topology’s physical plan is a known NP-complete problem (Fernandez-Baca,
1989), where multiple optimum plans exist for a given set of constraints. There are
numerous examples in the literature of automatic scheduling algorithms that use a variety



1.3. MODEL-BASED SCALING DECISIONS 11

of approaches to obtain an optimum plan (see chapter 3 for more details). However, whilst
these systems allow the removal of the human administrator from the scaling decision loop,
they still require multiple iterations of the full loop in order to converge on a valid plan
(see figure 1.4). Even the advanced machine learning algorithms, described in chapter 3,
cannot avoid the time penalty of repeated iterations of this loop.

Automated 
Scheduler

Physical Plan

DSPS

DeploySchedule

Stabilise

Analyse

Figure 1.4: The schedule → deploy → stabilise → analyse scaling decision loop with an
auto-scaling system included.

1.3 Model-Based Scaling Decisions

In order to reduce the time taken to make scaling decisions, the loop shown in figure 1.4
needs to be shortened. Ideally, the time costly phases of deployment, stabilisation and
analysis should be performed as few times as possible, preferably once. What is required,
therefore, is a way to assess if a physical plan is likely to meet a performance target before
it is deployed to the DSPS cluster.

This implies the need for a performance modelling system capable of assessing a proposed
physical plan. This system should be able to use recent metrics data, collected from a
running topology, and predict the end-to-end latency and throughput of that topology
as if it were configured according to the proposed plan. Such a system could not only
address the time taken to converge on a valid physical plan (as discussed in section 1.3.1)



12 CHAPTER 1. INTRODUCTION

but also provides several other advantages (described in sections 1.3.2, 1.3.3, 1.3.4) over
the current topology scaling approach described in section 1.2.

1.3.1 Faster convergence on a valid plan

The inclusion of a performance modelling system into the scaling decision loop would
allow schedulers to decide whether a plan is appropriate before it is deployed, avoiding
the significant costs that are incurred for that operation (Heinze, Jerzak, et al., 2014).
This would also allow an auto-scaling system to quickly iterate to an initial deployment
plan based on some preliminary metrics rather than iterating over the full scaling loop
or, in the case of reinforcement learning auto-scaling approaches, waiting for an extended
training period (with a sufficient variation in states) to be completed.

Automated 
Scheduler

Physical Plan

DSPS

Deploy

Schedule

Stabilise

Analyse

Performance 
Modelling 
System

Reschedule

Figure 1.5: An auto-scaling system paired with a performance modelling system.

Figure 1.5 shows the effect of adding a performance modelling system into the scaling
decision loop. The deployment section of the loop is short-circuited through the modelling
system. Assuming an efficient modelling process, the schedule → model → deploy loop
should be significantly quicker at finding a physical plan to meet a given performance
target than the schedule → deploy → stabilise → analyse loops shown in figure 1.3 and
figure 1.4.



1.3. MODEL-BASED SCALING DECISIONS 13

1.3.2 Feedback for scheduling decisions

An additional advantage that a performance modelling system would provide is detailed
feedback on a proposed physical plan’s performance. The modelling system could return
detailed breakdowns of aspects of the plan which did not meet given performance criteria.
Bottlenecks within the topology’s data flow, overloading of individual worker nodes and
many other issues could be identified for a proposed physical plan. The scheduler could
then use this information to make more informed scaling decisions, potentially reducing
the total number of iterations required to converge on a valid physical plan.

1.3.3 Pre-emptive scaling

In order to predict the performance of a proposed physical plan, the modelling system
also needs to know the expected incoming workload (Υ) into the topology. The system
could simply assume that the workload level will remain unchanged, but the imperative to
perform a scaling action on the topology is usually due to a change in workload and so
some notion of what that new workload level is likely to be must be provided.

A pessimistic approach to workload prediction could be to take the expected peak load
into the topology, discerned from historical data, and find a physical plan that could
perform at the target performance level (Tp) under that load. However, this would lead
to significant over provisioning and ignores one of the key features of DSPS, namely the
ability to scale dynamically as input workload changes.

If incoming workload levels could be forecast some time (τf) into the future, then this
would allow an auto-scaling system to model the effect of that predicted workload level
(Υ̂) on the currently running physical plan. If the predicted performance level (T Υ̂

p ) of the
proposed physical plan does not meet the required performance level (Tr) for the predicted
workload level, then the system can pre-emptively begin the scaling operations. Ideally
τf would be longer than the time taken to perform the modelling process (τmodel) and for
the topology scaling operations to complete (τscale). If τf > τmodel + τscale then the scaling
operation could be completed before the new workload level was expected to arrive and
the performance target could be maintained. This processes is illustrated in figure 1.6.

Forecasting incoming workload levels is an entire field of study in itself. However, several
off-the-shelf approaches exist for forecasting of time series data and could be used in
conjunction with the performance modelling system. There are also issues around when
to perform the forecasting and how to take forecasting and performance modelling error
into account in decision of when and how to begin scaling. However, it is clear that a
performance modelling system is a key requirement in any pre-emptive scaling system.



14 CHAPTER 1. INTRODUCTION

Physical Plan

Automated 
Scheduler 

Time

Workload Workload Forecast

System
Performance

Modelling 

System

Workload prediction 

Topology 
performance 

prediction 

Reschedule Deploy

Figure 1.6: The pre-emptive scaling process made possible by combining a performance
modelling system with an incoming workload forecasting system.

1.3.4 N-version scaling

Another significant advantage to having a modelling system for proposed physical plans
is that it allows the output from different schedulers to be compared. When using the
current scaling decision process (see figure 1.3) or the auto-scaling processes proposed
in the literature (see figure 1.4), only a single scheduler can be used. The scaling loop
occupies a significant amount of time and therefore repeating the loop additional times
for different schedulers would be prohibitively expensive, not to mention the fact that
currently there is no way for a scheduler to differentiate between different physical plans.
However, with a modelling system, multiple physical plans can be produced and compared
in parallel.

As scheduling of DSPS topologies is an NP-Complete problem there are diverse approaches
for producing physical plans for a given topology. Each has been designed with a specific
use case and set of underlying assumptions in mind. Depending on the application that
the topology is designed for, as well as its deployment environment, one or another of
these proposed schedulers will be more appropriate. With a performance modelling system
the user of a DSPS would not need to determine a priori which scheduler was the most
appropriate for their use case. They, or an automatic scaling system, could simply employ
a range of schedulers and use the modelling system to compare their performance and
select the best one.

This approach also has advantages with regard to possible errors in the scheduler imple-
mentations. For example, if a given scheduler has a bug, multiple other implementations
with the same optimisation goals (computing resource, network traffic, etc.) could be
compared in parallel and matching plans from a majority of schedulers chosen to reduce
the chances of a ‘buggy’ plan being chosen. This is a form of N-version programming from
fault tolerant software design (Chen & Avizienis, 1995).



1.4. SUMMARY 15

1.4 Summary

DSPSs provide the functionality to process high volumes of data at high velocity. However,
whilst many of these systems provide the functionality to scale up (and down) to match
incoming workloads, all but one (Apache Heron) have no way to do this automatically.
Proposed solutions in the literature focus on the problem of creating optimal physical
plans and not on the time taken to deploy, stabilise and check that a scaling decision has
met a given performance target.

The introduction of a performance modelling system, for proposed physical plans from
any of the many schedulers proposed in the literature (see section 3), would allow the
expensive scaling decision loop to be shortened. Such a performance modelling system
provides several advantages:

• Reduces the time to find a viable physical plan to meet a given performance service
level agreement (SLA).

• Can provide detailed feedback on the performance of a proposed plan that can be
used to inform the scheduler’s future decisions.

• When coupled with a workload prediction system, can facilitate pre-emptive scaling
by allowing a physical plan that can satisfy the SLA in the face of the predicted
workload to be deployed before that workload arrives.

• Allows multiple physical plans from different scheduler implementations to be com-
pared in parallel. Allowing the user to avoid the task of choosing the most appropriate
scheduler for their workload and application domain.

1.4.1 Research aims

The research described in this thesis has several aims:

• Create a performance modelling system for DSPS queries (topologies).
• The system should have the ability to model any proposed physical plan created

by a scheduler implementation. This includes various streaming operator types
(windowing, joining, splitting, etc.) and connections between them (load balanced or
key based routing).

• The system should be able to provide performance estimates using a minimum
amount of input data and avoid the need for extensive calibration or training periods.
Such periods would remove the advantage of adding a performance modelling system
by requiring many deploy → stabilise cycles to be carried out in order to provide
the calibration/training data.

The central hypothesis of this thesis is that the above aims can be achieved using an
approach based on queuing theory and discrete-event simulation (DES), without the need



16 CHAPTER 1. INTRODUCTION

to resort to using machine learning based approaches and the onerous training and data
requirements they entail (see chapter 3 for more details).

1.5 Thesis Structure

Chapter 2 describes the process of choosing the example DSPS, Apache Storm, and goes
on to describe in detail the relevant aspects of Storm’s operation. Chapter 3 details the
previous work in the field of DSPS automation and performance modelling. Chapter 4
describes the approach taken to modelling the performance of Apache Storm topologies.
Chapter 5 analyses the accuracy of the modelling system and evaluates its performance.
Finally, chapter 6 discusses the results of the doctoral research and looks at future areas
of study.

In addition to the main chapters, there are several appendices with supporting information:
appendix C details the implementation of the performance modelling system and its sup-
porting infrastructure; whilst appendix D details the outcome of applying the performance
modelling approach developed for Apache Storm to Twitter’s Heron DSPS as part of a
four month internship with the company.

1.6 Related Publications

During the course of my PhD research I have contributed to the following peer-reviewed
publications:

• Cooper, T. (2016) ‘Proactive scaling of distributed stream processing work flows using
workload modelling: Doctoral symposium’, in Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems - DEBS ’16. pp. 410–413.

This paper, produced in the first year of my PhD, introduces my research area,
defines the problem I was addressing and outlines my proposed solution. The initial
focus of my research, as described in this paper, was on pre-emptive scaling (see
section 1.3.3), however this subsequently changed to focus solely on the accuracy of
the topology performance model.

• Kalim, F., Cooper, T., et al. (2019) ‘Caladrius: A Performance Modelling Ser-
vice for Distributed Stream Processing Systems’, in Proceedings of the 35th IEEE
International Conference on Data Engineering. pp. 1886–1897.

During my internship at Twitter, detailed in appendix D, I applied the modelling
techniques I developed for Apache Storm (see chapter 4) to Twitter’s Heron DSPS. As
well as a topology performance modelling system, I developed a workload forecasting
system for Heron topologies. Following my internship, another PhD student continued



1.6. RELATED PUBLICATIONS 17

to develop the modelling system (called Caladrius) as part of a subsequent internship
and this paper details our combined work in collaboration with Twitter’s Real Time
Compute team.

• Cooper, T., Ezhilchelvan, P. & Mitrani, I. (2019) ‘A queuing model of a stream-
processing server’, in 2019 IEEE 27th International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems (MASCOTS). pp.
27–35

As part of the development of the model used for the predicting the latency of the
Storm executors (see section 4.2), various standard queuing models were considered.
However, none were deemed to meet the unique characteristics of Storm’s queue
implementation (see section 2.7). In the end a discrete event simulator was used
to model the Storm executors (see appendix B). Towards, the end of my PhD
I collaborated with Isi Mitrani and Paul Ezhilchelvan to develop new analytical
solutions for modeling these unique queueing systems. This paper details both exact
and approximate solutions for modelling the stream processing queues, as well as
looking at possible optimisations of the queue parameters.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Distributed Stream Processing
Architecture

2.1 Choosing an Example System

Distributed stream processing systems (DSPSs) share many high-level characteristics.
Most represent their streaming queries as directed graphs of operators, commonly referred
to as a topologies. They provide ways to have multiple copies of each operator in those
topologies, have a notion of a worker entity that contains these operator copies and provide
infrastructure to coordinate all these elements. However, in order to efficiently investigate
the challenges and possible approaches to performance modelling of DSPS topologies, a
single test bed system was required.

This PhD research began in the summer of 2015 and at that time there were multiple
DSPSs available. In deciding which system to select, several criteria were used:

• Candidate systems should be open source projects, so that the entire code base could
be inspected, altered and any contributions could be released publicly.

• The chosen DSPS should be under active development. This would ensure that any
queries around the operation of the system had a chance of being answered by that
system’s developers.

• The chosen system should have industry backing and be used in production environ-
ments. This would mean that the developed modelling system could be of practical
use to industry and be developed and tested on a realistic DSPS workloads and
infrastructure.

The criteria above excluded many DSPSs discussed in the literature, such as Borealis
(Abadi et al., 2005; Ahmad et al., 2005; Balazinska et al., 2005), S4 (Neumeyer et al.,
2010) and STREAM (Arasu et al., 2016), as these systems were no longer under active

19



20 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

development or being used in production environments.

The mainstream, open source DSPSs available in 20151 were Apache Storm, Flink (Alexan-
drov et al., 2014), Samza and Spark Streaming (Zaharia et al., 2013). Of these only
Apache Storm satisfied all the criteria listed above.

2.2 Apache Storm Overview

This section provides a brief overview of Apache Storm’s architecture and operation. The
rest of this chapter gives a more detailed breakdown of the Apache Storm DSPS, its internal
structure and how it distributes work across a cluster of machines. This information was
sourced from Toshniwal et al. (2014), Kulkarni et al. (2015), the Storm documentation2

and source code3. Please note that the descriptions in this chapter refer specifically to
Apache Storm version 1.2.2 (unless otherwise stated).

2.2.1 Background

Apache Storm4 began life at the market research firm Backtype. It was designed by
Nathan Marz (the original proposer of the Lambda Architecture (Marz & Warren, 2015))
to perform analysis on the Twitter5 ‘fire hose’, the real-time stream of all tweets posted to
the social network. To cope with such a large volume of data arriving at high velocity and
be able to return analysis results in a timely manner, Storm was designed with massive
scale in mind. It provided fault tolerance, a simple application programming interface
(API) and was able to dynamically scale its topologies.

In 2011 Twitter acquired Backtype6, in part to gain access to Storm which they considered
better than their current stream processing solutions. Once at Twitter, development of
Storm accelerated and it was open sourced that same year, becoming a top level Apache
project in 2014.

Storm formed the basis of all of Twitter’s critical internal real-time compute functionality
(Toshniwal et al., 2014), and because of its performance at Twitter was used by many
other companies including Yahoo and Alibaba. At the time of DSPS selection in 2015
Storm was seen as the stream processing system of choice and was commonly referred
to as the ‘real-time Hadoop’ in recognition of its wide adoption and big data processing
abilities.

1See (Hesse & Lorenz, 2015) for a more detailed, comparison of the systems (as they were in 2015).
2https://storm.apache.org/releases/1.2.2/index.html
3https://github.com/apache/storm/tree/v1.2.2
4http://storm.apache.org/
5https://about.twitter.com/
6Details of this time and the early versions of Storm can be found on Nathan Marz’s blog:

http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html

https://storm.apache.org/releases/1.2.2/index.html
https://github.com/apache/storm/tree/v1.2.2
http://storm.apache.org/
https://about.twitter.com/


2.2. APACHE STORM OVERVIEW 21

Storm is not without its faults and has since been replaced as Twitter’s real-time compute
backbone by Heron7 (Kulkarni et al., 2015). However, it has a stable codebase, is still
under active development (its version 2.0 release happened in late 2019) and is still used
in production at several large companies.

2.2.2 Overview

Apache Storm allows a developer to define a query (sequence of operations) which can be
applied to a continuously arriving stream of data items, which are referred to as tuples
within Storm. This query can be formed of two or more components that contain user
defined code which receive tuples and create zero or more tuples in response. The developer
defines the type of connection between components (see section 2.5) by specifying the
streams that components subscribe to and output tuples onto. Components can subscribe
and output to multiple streams and can place different output onto different streams. This
allows developers to create components that can split and join streams.

The sequence of connected components forms a directed graph, which is referred to as a
topology (see section 2.3.2). Much of the technical and academic literature will refer to
streaming queries as directed acyclic graphs (DAGs). However, there is no functionality
in any of the mainstream DSPSs to stop a developer creating a cycle within a streaming
query. In fact, many of the message guarantee implementations in DSPSs form them by
default. Therefore, topologies should only be referred to as directed graphs (DiGs).

Figure 1.1 shows an illustration of a topology; for example, this could be extracting tweets
from a web API and counting the prevalence of words and hashtags (words preceded by
special characters to indicate topics). The first component (S) pulls external messages into
the topology and is a special type of Storm component called a spout (see section 2.3.2).
This then emits the raw text of the tweet to component A which splits the text into
individual strings (words and hashtags) which are sent to component B. This then sends
words to component C and hashtags to component D on separate streams. Both these
components maintain counts of their respective inputs and periodically update external
databases.

The developer writes each of the topology’s components as a Java8 class and specifies how
these components are connected via a builder class in the Storm API. Once the topology is
defined and any additional configurations are set, the developer compiles the topology into
a JAR9 file which contains all the dependencies needed to run the user defined code. This
JAR is then issued to the Storm Cluster via a command line client and the main control

7https://heron.incubator.apache.org/
8Java is the main language used with Storm, however APIs for Python and Clojure exist as well as the

option to run generic binaries on the worker nodes.
9JAR files are Java’s compressed archive format.

https://heron.incubator.apache.org/


22 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

node (Nimbus) will then distribute the code across the cluster and begin processing. At
any time the developer can use the command line client (or the web user interface) to
stop, kill or change the topology’s configuration (see section 2.11).

2.3 Storm Elements

2.3.1 Storm cluster

Several nodes, consisting of real or virtual machines, comprise an Apache Storm cluster.

Master/Nimbus

The Master node is the leader of the Storm cluster and is the control point to which jobs
and commands are submitted. It runs a daemon called ‘Nimbus’ (the master node is
often referred to as the Nimbus node) that is responsible for distributing code around the
cluster, assigning tasks to machines and monitoring for failures.

Worker node

The machines which perform the actual computation on the streaming data are the worker
nodes. These run a daemon called the supervisor. The supervisor listens for topology
configurations (see section 2.6.2) assigned to its machine and starts and stops worker
processes (the elements that run the processing logic for a topology — see section 2.4.3) as
necessary. Each worker node has a set number of slots available to run worker processes.
This number of slots is fixed when the supervisor daemon is started and can only be
changed via a restart of the daemon.

Zookeeper

All coordination between Nimbus and the supervisors is done through a Zookeeper10 cluster.
Additionally, the Nimbus daemon and supervisor daemons are fail-fast and stateless; all
state for these daemons are kept within the Zookeeper cluster so that nodes can be quickly
restarted in the event of failure.

2.3.2 Topology

The DiG of operators that form a query over a set of streaming inputs is referred to as
a topology in Storm. A topology can be represented in many different ways ( section 2.6
describes these in more detail). However, at a high level, each topology is formed of several
connected components (spouts and bolts) that contain user defined code which operates

10https://zookeeper.apache.org/

https://zookeeper.apache.org/


2.4. PARALLELISM IN STORM 23

on the streams of incoming data. A user will define the processing logic in each component
and how those components will route data to the components further along the topology
(downstream). The principal elements of a Storm topology are described below:

Tuple streams

The core abstraction in Apache Storm is the stream. This is an unbounded sequence of
data items that pass into and out of the topology’s components. In Storm these data items
are referred to as tuples and consist of key/value pairs (the keys are referred to as fields
within Storm). Each tuple stream is configured with a stream grouping that dictates which
downstream element will receive the outgoing tuples. Stream groupings are discussed in
more detail in section 2.5.

Spouts

Spouts are the source of tuples for the topology. Spouts connect to data sources outside of
the Storm system (element S in figure 1.1 is an example of a spout). Spouts can connect
to message brokers such as Apache Kafka or Apache ActiveMQ, Web APIs such as Twitter
or many other sources of input events. Spouts are also part of Storm’s message guarantee
system and are responsible for acknowledging the processing of messages and dealing with
messages that have failed to be fully processed (see section 2.9 for more details).

Bolts

Bolts are the main components in a Storm topology. They can subscribe to multiple input
streams produced by other bolts and spouts, and can emit tuples onto multiple output
streams. When a bolt emits a tuple onto a stream, these are sent to all the bolts that are
subscribed to that stream. For example, in figure 1.1, bolts C and D subscribe to bolt B.
If C and D were subscribed to the same output stream from bolt B then, when bolt B
emits a tuple, a copy is sent to both bolts C and D for them to process. However, if bolt
B creates different content for bolts C and D, these separate tuple types can be submitted
to different output streams which bolts C and D can subscribe to separately.

2.4 Parallelism in Storm

One of the most powerful features of Apache Storm is its ability to scale its topologies.
Scaling in Storm refers to the increasing or decreasing of the number of replicas of a given
component (spout or bolt). The number of replicas of a component at any given time is
referred to as the parallelism of that component.

Storm runs a user-defined number of replicas of the topology’s components in parallel



24 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

across a number of worker processes (see section 2.4.3), which themselves are running on
the various worker nodes of the Storm cluster. Each worker process runs several executors,
which are the replicas of each component (see section 2.4.1) and are the main processing
units of a topology. Each executor is formed of several threads and queues. The executors
each hold a number of tasks (see section 2.4.2) which do the actual tuple processing and
aid in state partitioning. Figure 2.1 shows a diagram of the internal structure of a worker
process and the elements are described in more detail in the sections below.

Worker Process

Executor 1 of N

ERQ

ULT

EST

ESQ

Task-1

Send Thread

WPTQ

To other ERQ

Incoming TCP port

Outgoing TCP port

Figure 2.1: The internal structure of a worker process and executors.

2.4.1 Executors

Executors are the principal processing unit of a topology and its primary form of parallelism.
They represent the processing elements of the topology’s logical plan (see section 2.6.3).
Multiple executors can run in each worker process and each executor is formed of two
threads, the user logic thread (ULT) and the executor send thread (EST). Along with the
processing threads each executor has queues to buffer the incoming tuples. Bolts have two
internal queues, the executor receive queue (ERQ) and the executor send queue (ESQ),
whilst spouts (which create tuples) have only the ESQ. These internal queues are described
in more detail in section 2.7 and the processing of tuples within the executors is covered
in more depth in section 2.8.1.

Each executor runs code for a single component. The number of executors for each
component is configurable via the parallelism that is set when each spout or bolt is created
via the topology configuration (see section 2.6.2). The executors are spread across the
worker processes in the cluster. The number of executors can be changed while the topology
is running to improve performance, see section 2.11 for more details.



2.4. PARALLELISM IN STORM 25

2.4.2 Tasks

Each task is an instance of the user defined code for a given component and maintains
any state for that code in memory. They are run within the ULT of each executor. An
executor can hold multiple tasks but, as the tasks are run in the single ULT, only one
task is running at any one time within the executor. Therefore, the number of executors
assigned to a component will be less than or equal to the number of tasks assigned to it.
The total number of tasks for each component is fixed for the lifetime of the topology and
so any changes in the parallelism of a component (the number of executors assigned to a
component) will mean that the tasks may be reassigned to different executors.

The motivation for using a separate entity to sub-divide the tuple processing within an
executor, instead of running the same code instance on every tuple, is linked to the routing
of tuples (see section 2.5) and the management of state within the executors.

For example, if we wish to perform a word count, we need to partition the stream of
word tuples by a key value (fields grouping — see section 2.5), in this case the word itself.
This is so that tuples containing the same word are always routed to the same executor,
otherwise we would not have a unique, accurate count of each word’s frequency. For a
topology that never changes, the need for further sub-dividing the processing in each
executor is not immediately obvious. We could just assign each executor a unique number
and use that to route tuples of the same word to the same executor. However, if we change
the parallelism of the topology’s components, the state within each of the executors in
the old arrangement will need to be redistributed between those in the new arrangement.
Also, once the state has been redistributed, tuples need to be routed to the new executor
containing the state for their particular key (field) value.

There is no general solution to this state repartitioning issue. The state could be strings
(like in the case of a word count), numerical or custom data types. Knowing how to
combine or divide this state and still route tuples to the correct executor, after a change
in parallelism, is a difficult problem and in order to cover all options a DSPS would need
to provide custom state partitioners for every topology.

Storm avoids this situation altogether by fixing the number of tasks for the lifetime of
the topology. This approach automatically segregates the state space into a fixed number
of partitions. The number of downstream tasks (for a fields grouped connection) does
not change, regardless of the parallelism of the downstream component and so the value
of the key (field) used for the tuple routing will always correspond to the same task
identifier, regardless of which executor that task is hosted in. This situation is illustrated
in figure 2.2.

When a component is scaled up or down, the tasks assigned to each of that component’s



26 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

Executor 1

1

2

3

Executor 2

4

5

6

Executor 1

1

2

3

Executor 2

4

5

6

(key1 : "value1")

hash 
function

3479 % 6 = 5

Executor 3

Executor 4

(key1 : "value1")

hash 
function

3479 % 6 = 5

Component parallelism = 2 Component parallelism = 4

Figure 2.2: Illustration of how the fixed number of component tasks ensures deterministic
routing when component parallelism changes.

executors may change. In order to restore their state, the new executors can simply retrieve
the state for each of the tasks they have been assigned without needing special logic to
recombine that state. This means the user does not need to code state partitioning into
their component design.

The default setting is to have one task per executor. However, if you know that in future
you may wish to scale up your topology, by having multiple replicas of each component,
you can specify more tasks per component. The task per component value represents an
upper bound on the scalability of a topology, beyond which you would have to take the
topology down and restart it in order to increase the parallelism of a component.

2.4.3 Worker processes

Each worker node (see section 2.3.1) runs a number of worker processes. Each worker
process is a separate operating system (OS) level process, in this case a Java Virtual
Machine (JVM) instance, that runs operations from a single topology. Multiple worker
processes from the same topology may run on the same worker node, as well as worker
processes from completely separate topologies.

Each worker process is made up of several threads. The worker process maintains a
thread connected to the network which transfers tuples directly from the network to the
appropriate executor. There are then a number of executor threads running within the
worker process which process the tuples. Finally the worker process send thread (WPST)



2.5. STREAM GROUPINGS 27

takes messages from the worker process transfer queue (WPTQ), which contains tuples
emitted by the executors, and sends them on to their required destination. This destination
may be a task on a different worker process on the same worker node or a task in a worker
process on another worker node in the cluster. Tuples bound for executors in the same
worker process are transferred directly to their destination by the executors themselves.
This process is covered in more detail in section 2.8.2.

There are a set number of worker processes for each topology. These will be distributed
across the available worker nodes within the Storm cluster. The number of worker processes
for a topology can be altered while the topology is running to improve performance,
see section 2.11 for more details.

2.5 Stream Groupings

As mentioned in section 2.3.2, the core abstraction of Storm is the stream. Topology
components can subscribe to any stream emitted by any other component in the topology.
The stream grouping refers to how the stream routes tuples from the tasks of one component
to the tasks of another. There are several groupings available by default and these are
summarised below:

Shuffle

When created this grouping will randomise the list of task IDs assigned to the downstream
component. Then, every time this grouping is asked for a downstream task, it returns the
next ID in this list, wrapping around to the first item when it reaches the end. As the
task IDs assigned to a component are shared equally across all executors assigned to that
component, this has the effect of load balancing the output tuples across all downstream
executors.

Fields

A fields grouping will take one or more field (key) values from an outgoing tuple and use a
hash function to get an integer value representing the values of the chosen field(s). The
modulo of this hash value with the number of tasks in the downstream component is then
taken. This yields an index which is used to extract a task ID from a list of all downstream
tasks.

This method ensures that tuples with the same field(s) value(s) will always get routed
to the same downstream task. This grouping is used for topologies where aggregation is
required (such as a word count).



28 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

All grouping

This will send a copy of each emitted tuple to all the tasks of a downstream component.
This is usually used for testing and is not recommended for production.

Direct grouping

This is a special kind of grouping which allows the emitting task to dictate which down-
stream task should receive the tuple. This can only be performed on streams that have
specifically declared as direct streams and is most often used for messaging between the
Storm system components.

Custom stream grouping

On top of the grouping described above a user can implement their own grouping (routing)
strategy by extending the base grouping class.

2.6 Topology Plans

In discussion of Apache Storm topologies there are several distinct ways in which a topology
can be represented, depending on the context. These are defined below and illustrated in
figure 2.3.

2.6.1 Query plan

The query plan refers to the high level DiG of components (spouts and bolts — see
section 2.3.2) that forms the Storm topology. This is the plan that a user would implement
by defining the logic that will operate on the stream of tuples and how the components
are linked together. The user will also set the number of tasks for each component when
designing the query plan. Once set, these values are immutable and are shown in the
boxes below the components in the query plan section of figure 2.3.

2.6.2 Configuration

The topology configuration refers to the parallelism (number of replicas — see section 2.4)
of each component and the number of worker processes (see section 2.4.3) assigned to the
topology. The topology configuration is the minimum information a scheduler requires in
order to create a physical plan proposal and is set by the user during topology deployment
and rebalancing (see section 2.11).

The topology configuration in figure 2.3 shows the parallelism of each of the components
listed in the query plan above it, as well as the parallelism of the Acker component.



2.6. TOPOLOGY PLANS 29

Figure 2.3: Example of the different plan types for a simple linear topology.



30 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

The Acker is a system component and is part of Storm’s message guarantee system (see
section 2.9). It is automatically added to every topology and its parallelism can be
altered via the topology configuration like any other component. Finally, the topology
configuration sets the number of worker processes assigned to the topology.

2.6.3 Logical plan

The logical plan is the DiG of individual processing units. In the case of Storm this will be
the executors (see section 2.4.1) that run the replicas of the user defined tuple processing
code. Depending on the topology configuration there could be multiple executor instances
for each component. The number of tasks assigned to each component are divided equally
between the executors assigned to that component.

The executors in the logical plan shown in figure 2.3 are labeled with their assigned task
ranges. The task ID numbers are unique within a topology, tasks in different executors
cannot have the same ID and therefore they are sequential across components. The Acker
are also assigned task ID numbers, however these are labeled differently for illustration
purposes.

2.6.4 Physical plan

The physical plan is the layout of elements of the logical plan on the physical elements of
the Storm cluster (see section 2.3.1). Therefore the physical plan shows which tasks (see
section 2.4.2) are within each executor, which executors are within which worker process
and on which worker nodes those worker processes are located. It is the physical plan
which the schedulers, described in section 2.10, produce when given a query plan and
topology configuration.

The physical plan shown in figure 2.3 is a representation of the output Storm’s default
round-robin scheduler would produce if given the query plan and topology configuration
shown at the top of the diagram.

2.7 Internal Queues

The queue implementation used in Apache Storm11 is based on a message passing system
developed by the LMAX Financial Exchange12. This system, called Disruptor, is designed
to allow concurrent threads to input into and extract from a shared queue. Quoting from
the LMAX white paper (Thompson et al., 2011):

11The descriptions in this section relate to Apache Storm version 1.2.2 and earlier. The queue
implementation was changed in version 2.0.

12https://www.lmax.com/

https://www.lmax.com/


2.7. INTERNAL QUEUES 31

“At the heart of the disruptor mechanism sits a pre-allocated bounded data
structure in the form of a ring-buffer. Data is added to the ring buffer through
one or more producers and processed by one or more consumers.”

Storm uses the Disruptor Ring Buffer to allow the executors to be able to extract tuples
off the queue, at the same time as the worker processes are adding them without using
locks or barriers which may slow processing time or cause race conditions.

In order to use the Disruptor effectively Storm wraps the Ring Buffer in some additional
infrastructure. This adds the ability to deal with overflowing queues and uses batch
insertion into the Disruptor to ameliorate the overhead of the insertion operation. These
Disruptor queues are used for the ERQ and ESQ within the executors (see section 2.4.1)
and the WPTQ within each worker process (see section 2.4.3).

2.7.1 Overview

Tuple list

Input batch Overflow queue

τ

Timer-Flush Thread

Ring Buffer

Available Ring Buffer
population

Server

µ

Figure 2.4: The Apache Storm Disruptor queue implementation.

The implementation of the Apache Storm Disruptor queue is illustrated in figure 2.4. It is
formed of several elements which wrap the Disruptor Ring Buffer. There is an unbounded
overflow queue, in front of the Ring Buffer, onto which batches of incoming items are
placed. The items in the batches on the overflow queue are moved onto the Ring Buffer,
which has a fixed size, when there is space for them.

Periodically, at a constant rate, a timer-flush signal is issued to the overflow queue. When
a timer-flush is triggered, the current input batch (regardless of its size) is transferred to
the overflow queue (or directly to the Ring Buffer if the overflow queue is empty and there
is space). Then all batches in the overflow queue are pushed to the Ring Buffer. This
timer-flush operation will linger, with subsequent flush signals being ignored, until the
overflow queue is empty.

The slots in the Ring Buffer contain individual items from each inserted batch. A consumer



32 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

(such as an executor) asks the Ring Buffer for new items when that consumer is idle. The
Ring Buffer will then return all available items to the consumer for processing.

The sections below go over the operation of the Disruptor queue in more detail and flow
charts are provided for easy reference.

2.7.2 Queue input

In the following sections, the items arriving into the Disruptor queue are described as
objects. This is because, depending on the context the Disruptor queue is used in, the
input into the queue can vary. It may be an individual tuple (for the ESQ), a list of tuples
(for the ERQ) or a map data structure which links identifier keys to a list of tuples (for
the WPTQ). Further details on the input to these queues are given in section 2.8 and the
second situation, for the ERQ, is illustrated in figure 2.4.

2.7.3 Arrival into the queue

Arriving objects are placed into a batch data structure (see Input Batch in figure 2.4). If
the number of objects now in the input batch reaches a pre-set maximum size then the
batch will either be placed directly onto the Ring Buffer or, if there is insufficient space for
all objects in the batch, the batch (in its entirety) will be placed onto the overflow queue.

Every time an object is added to a batch and the batch is below the batch size limit, a
non-blocking arrival-flush operation is called on the overflow queue. This involves looping
through the batches in the overflow queue (from oldest to youngest) and attempting to
add them to the Ring Buffer. If, at any point in this loop, there is not enough space for
all the objects in the current batch in the Ring Buffer then the arrival-flush operation is
cancelled. Figure 2.5 shows the arrival process in the form of a flow chart.

2.7.4 Timer flush interval completes

Periodically, at a constant rate, a timer-flush signal is sent to the overflow queue. This flush
signal first causes the current input batch to be placed on the overflow queue, regardless
of how many objects are in the batch. Then the batches in the overflow queue are looped
over (from oldest to youngest) and their objects inserted into the Ring Buffer.

The difference between this process and the non-blocking arrival-flush (described in
section 2.7.3) is that, if there is no space in the Ring Buffer for all the objects in the oldest
batch, the system will wait for there to be space and then insert that batch. If an arrival
happens during this wait period, the object will be added to a new input batch and the
arrival-flush signal that this triggers will be ignored. If a new input batch fills up during



2.7. INTERNAL QUEUES 33

Figure 2.5: Flow chart showing the sequence of operations that occur when a job (either a
tuple, list of tuples or map of tuples depending on the context) arrives at the queue.



34 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

Figure 2.6: Flow chart showing the sequence of operations which occur when a flush
interval completes.



2.7. INTERNAL QUEUES 35

the timer-flush operation, then that new batch will be added to the overflow queue and its
objects will be added to the Ring Buffer as part of the timer-flush process.

If flushing all the batches in the overflow queue takes more time than the interval between
timer-flush signals, then the subsequent timer-flush signal will be ignored. Figure 2.6
shows the timer-flush process in the form of a flow chart.

2.7.5 Service completes

Figure 2.7: Flow chart showing the sequence of operations which occur when a tuple
finishes service within the executor.

The servers which consume from the Ring Buffer vary in behaviour depending on the
objects that are stored within the Ring Buffer. The server continually asks the Ring Buffer
to provide objects. Any time a request is made the Ring Buffer will return all the objects



36 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

it contains to the server. The server will then process the objects sequentially until all
finish service and will then ask the Ring Buffer again. Figure 2.7 shows the process which
occurs when a tuple finishes service in an executor in the form of a flow chart.

2.8 Tuple Flow

This section gives a overview of the low-level tuple flow through an Apache Storm topology.
Whilst section 2.7 detailed the operation of the queues within the executors and worker
processes, this section details how those queues fit into the wider tuple flow.

2.8.1 Executor tuple flow

Figure 2.8 shows a schematic of the tuple flow through the elements of the executor.
The inputs into the ERQ are lists of tuples which are addressed for the task instances
housed within this particular executor. These are then the objects which pass through the
Disruptor queue described in section 2.7.

The ULT, which is the thread controlling tuple processing in the executor, continually
polls the ERQ Ring Buffer to see if there are tuple lists awaiting processing. Once tuple
lists are present, the ULT will extract the entire population of the Ring Buffer into a list,
which acts as a buffer for the bolt task (see internal buffer in figure 2.8). It will then
iterate through this list (of tuple lists) and extract individual tuples which are then given
to the task’s execute method which contains the user defined code for each Bolt.

The bolt task will process the tuples in order and produce zero or more tuples as output.
The time taken to process each tuple is recorded and reported to the Storm metrics system
(see section 2.13). Once the internal buffer is empty, the ULT will then ask the Ring Buffer
again for all available tuple lists, which were added whilst the internal buffer was being
processed and will continue this cycle until the executor is terminated.

Tuples emitted by the bolt task are then submitted to the ESQ. For spout executors there
is no ERQ and tuples are generated directly in the Spout task and passed to the ESQ.
The ESQ is another Disruptor queue (as described in section 2.7), however in this case the
objects passing through the queue are individual tuples. The EST will poll the ESQ Ring
Buffer continually until tuples are available. When tuples are present on the Ring Buffer
the entire population of the Ring Buffer will be extracted to a list (see processing batch in
figure 2.8). This list of tuples is then sorted into tuples bound for tasks on this worker
process (Local Dispatch List) and those bound for tasks on separate worker processes
(Remote Dispatch Map).

The tuples in the Local Dispatch List are then given to the local transfer function (LTF)
which will sort them into lists for each executor and pass those lists to the relevant ERQ.



2.8. TUPLE FLOW 37

From 
remote 
worker 

processes

From 
local 

executors

Input batch

Overflow queue

Ring buffer

Executor
Receive 
Queue 
(ERQ)

Internal buffer

Task

Input batch

Overflow queue

Ring buffer

Executor
Send 

Queue 
(ESQ)

Processing batch

Executor 
Send Thread

(EST)

Local 
transfer 
function

Local dispatch list

5 6 4 5 4 6 4 5

2 3 1 2 3 1 1 2

7 8 9

Remote dispatch map

To the Worker 
Process Transfer 
Queue (WPTQ)

Figure 2.8: The tuple flow through the queues within each executor.



38 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

Tuples bound for tasks on separate worker processes are sorted into a map structure where
the keys are task ID integers and the values are lists of tuples bound for that task. The
Remote Dispatch Map is then submitted to the WPTQ.

2.8.2 Worker process tuple flow

Figure 2.9 shows a schematic of the tuple flow through the elements of the worker process
and how tuples are sent across the network to a remote worker process. The primary
elements of the worker process tuple flow are the WPTQ and the WPST.

The WPTQ is another Disruptor queue (as described in section 2.7), however in this case
the objects passing through the queue are the Remote Dispatch Maps, created by the EST
(see figure 2.8), which link task IDs to lists of tuples. The WPST will continually poll the
WPTQ Ring Buffer until Remote Dispatch Maps are available. Once maps are present,
the current population of the Ring Buffer will be transferred to a list (see processing batch
in figure 2.9). The WPST will then take that list of maps and unify them into a single
map so that each remote task ID links to a single list of outgoing tuples. This unified map
is then converted into a map from the address of a worker process to a list of tuples bound
for tasks on that worker process.

Each worker process list is then serialised (converted to a binary representation) and given
to the network client for transfer to the remote worker process. The remote worker process
receives the messages from other worker processes and de-serialises them back into lists of
tuples. These lists are then given to the LTF which, just as with the Local Dispatch List,
sorts the tuples into lists for each executor on the worker process and then issues these
lists to the relevant ERQ.

2.9 Guaranteed Message Processing

There a several forms of message processing guarantee that are typically provided by
DSPSs:

At most once This is the lowest form of message guarantee (if it can be called that at
all) and means that a message (a tuple in the case of Storm) will be issued only once.
The system does not keep track of sent messages and therefore, if the message fails
to transfer or the receiver crashes before it is able to process it, the message is lost.

At least once This form of message guarantee means that any message that does not
have a confirmed delivery will be resent from the source. This means that node
failures and network issues could mean that a particular message is seen multiple
times. The user of a system that provides this level of guarantee should implement
procedures to handle repeat messages.



2.9. GUARANTEED MESSAGE PROCESSING 39

Input batch

Overflow queue

Ring buffer

Worker
Process
Transfer
Queue 
(WPTQ)

Remote dispatch 
maps from all 

executors in the 
worker process 

Processing batch

7 9 11

Unified map

8 10

7 8 7 7 8 8 8 7WP1

9 9 11 10 9 10 11 10WP2

Sort into lists 
per worker 

process

Sort into 
lists per 

tasks

Worker Process Send Thread (WPST)

WP1 0110101001010110010010
0101010101010101010101

Serialised tuple list

Network Client

Receiving Server7 8 7 7 8 8 8 7

Network

Local 
transfer 
function

De-serialised tuple list

Figure 2.9: The tuple flow through the WPTQ, WPST and across the network to a
receiving worker process.



40 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

Exactly once This form of message guarantee is the highest available and means that a
message will definitely be sent and received once and once only. This means that
the user of such a system does not have to create additional logic to handle repeat
or missing messages.

Storm, by default, operates an at most once message delivery guarantee. However, it also
provides the option for a topology designer to enable an at least once processing guarantee
for every message emitted into the topology. A plugin for Storm called Trident13 can
provide additional message guarantee features including exactly once processing if required.
The at least once processing system can be enabled for the whole topology or only for
certain paths through the topology.

2.9.1 Acker

The acknowledger or Acker is a key component in Storm’s message guarantee system. If
guaranteed delivery is enabled for a topology then the Acker component is automatically
added to each topology at deployment. The number of Ackers is configurable, but the
default is to have one per WP (see section 2.4.3) unless very high levels of parallelism
(see section 2.4) are required. A direct stream (see section 2.5) is created between every
executor in the topology and the Ackers. Figure 2.10 illustrates how the Acker integrates
into a topology by using a sample logical path from the example topology shown in
figure 2.3.

Figure 2.10: A simple linear topology, showing the Acker component and various streams
associated with the message guarantee system.

2.9.2 Tuple tree

The message guarantee system works by sending acknowledgement (ack) tuples to the
Acker to denote when the various stages of message processing have completed.

13http://storm.apache.org/releases/current/Trident-API-Overview.html

http://storm.apache.org/releases/current/Trident-API-Overview.html


2.9. GUARANTEED MESSAGE PROCESSING 41

When a spout emits a tuple into the topology, an ack_init message is issued to the Acker
via a direct stream. Each source tuple from the spout has a unique message identifier that
is attached to the ack_init tuple. The Acker creates an entry for each source spout tuple
within an internal map. This map links the source spout tuple message identifier to a
64-bit value (ack_val) which is initialized to zero and also to the identifier of the spout
task that created the source tuple.

When a bolt issues a new tuple, it anchors this new tuple to the identifier of the tuple that
created it (the input tuple provided to the bolt task’s execute method). This transfers a
list of all the source spout tuple identifiers, that the input tuple resulted from, into the
new tuple and sends an ack_ack tuple from the bolt instance to the Acker. This ack_ack
tuple contains the original source spout tuple identifiers and the 64-bit tuple identifier
for the new tuple. The Acker looks up the relevant entries for the source spout tuple
identifiers and XORs (adds) the new tuple’s identifier with their stored ack_vals. This
effectively adds the newly emitted tuple to the tuple trees which are rooted at the source
spout tuples.

Once a bolt instance has finished processing an incoming tuple, i.e. all resulting child
tuples of that input tuple have been emitted, the bolt instance will ack the original input
tuple. This sends an ack_ack tuple (containing the source spout tuple identifier for
the input tuple and the 64-bit identifier for that tuple) to the Acker. The Acker then
looks up the source spout tuple identifiers and XORs (removes) the acknowledged input
tuple’s identifier from the stored ack_vals of those source spout tuples. This removes the
acknowledged tuple from the tuple tree rooted at the source spout tuples.

Once the final component of a topology is reached (or further processing does not need to
be guaranteed), the input tuple will be acknowledged but no new tuples will be created
and therefore no new anchoring (tuple identifiers added to the ack_val) will occur. Once
all the tuples that were produced from the original source spout tuple have reached an end
component (remembering that multiple tuples could be produced from a single input tuple
at each component in the topology), then the value stored for that source spout tuple’s
message identifier in the Acker should be zero (all the anchored tuple identifiers should
have been XOR’d with a corresponding acknowledgement identifier). Once the Acker sees
a source spout tuple’s value has reached zero it sends an ack_ack tuple to the spout task
instance that produced the message. The spout will then use the source tuple’s message
identifier in its ack method to perform any clean up operations with the external system.

If a source tuple’s Acker entry does not reach zero after a certain, configurable, time
(measured from the last received ack_ack for that source spout tuple message identifier)
then the Acker will send an ack_fail tuple to the spout task instance that produced the
original source tuple. The assumption is that if a tuple was emitted (and anchored) but not



42 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

acknowledged, that it either did not arrive at the downstream instance or the downstream
instance has failed. At this point the spout calls its fail method and will replay the
original source spout tuple and/or perform any other appropriate error recovery steps.

Storing a single value for each emitted source tuple is an effective way to limit the
overhead of tracking large volumes of tuples through a topology and allows Storm to scale
to hundreds of thousands of messages a second whilst still providing message delivery
guarantees.

2.10 Topology Scheduling

Figure 2.3 shows an example Storm topology with three components, one spout (S) and
two bolts (A and B). The topology configuration (see section 2.6.2) below the query plan
shows the parallelism hint (the number of executors) set for each component. The topology
configuration also shows the number of worker processes assigned to the topology. If we
assume that the Storm cluster has two worker nodes then a possible physical plan produced
from Storm’s default scheduler (EvenScheduler) is shown at the bottom of figure 2.3. The
EvenScheduler uses a round-robin system to assign the executors to the worker processes,
and worker processes to worker nodes. This scheduler is not resource or workload aware
and makes no assessment of where best to place a particular executor.

There have been several attempts to create more intelligent scheduling systems for
Storm. Xu et al. (2014) created a scheduler based on reducing network traffic across the
cluster of machines. Eskandari et al. (2016) use a graph partitioning approach to solve
the same problem. Peng (2015) created a scheduler that took network and resource usage
(CPU, Memory) into account when placing executors onto cluster machines (see chapter 3
for more examples). However, their system requires the user to provide all the expected
performance statistics for each of the components a priori.

The resource aware scheduler14, created by Peng (2015), is the only scheduler from the
literature currently available in the core Apache Storm distribution (version 1.0 and above).

2.11 Rebalancing

In order to give topologies the ability to react to changing workloads, Storm provides a
rebalance function. This function takes a topology identifier and then allows the topology
configuration (see section 2.6.2) to be altered. Storm uses a stop the world rebalancing
approach, where all processing is stopped whilst a new physical plan is calculated by the
scheduler. Then new instances of all the executors for a topology are created according to

14https://storm.apache.org/releases/current/Resource_Aware_Scheduler_overview.html

https://storm.apache.org/releases/current/Resource_Aware_Scheduler_overview.html


2.12. WINDOWING 43

the new physical plan. Any state stored by the tasks of a component can be recovered
from external storage systems using the task ID as an index.

2.11.1 Worker processes

At any time while the topology is running, additional worker processes can be added via
the rebalance command. These will be distributed across the cluster and the current
executors redistributed among them. Obviously, if the number of worker nodes has not
increased then this will result in more worker processes competing for the same cluster
resources.

2.11.2 Executors

The number of executors for each component can be increased via the rebalance command
and these will be redistributed among the available worker processes or across the new
number of worker processes if that is specified in the call to the rebalance command.
However, as mentioned above, if the cluster worker nodes are already heavily loaded then
adding additional executors (without adding additional worker processes and worker nodes)
may not result in significant performance improvements. This action may even reduce
overall performance due to the resulting resource contention.

2.11.3 Tasks

As mentioned in section 2.4.2, the number of tasks per component is fixed for the lifetime
of the topology and cannot be changed without stopping the topology and restarting it
with a new number of tasks assigned to each component.

2.12 Windowing

A common operation in stream processing is windowing. Often processing every single
input tuple individually is undesirable and/or inefficient. For example, computing a
complex operation on every single incoming measurement is less efficient than computing
it every minute with the average of all measurements that arrived in the last minute
(presuming a one minute latency is acceptable). Window operations can take several forms,
however they primarily fall into two categories:

2.12.1 Tumbling windows

Tumbling windows are defined as distinct, sequential blocks of time or data items. Once a
given duration or count has been reached the current window is completed and the next



44 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

0

e1 e2

5

e3 e4 e5 e6

10

e7 e8 e9

15

e10 e11

Time

Figure 2.11: Example of a tumbling window.

window block is started. For example, a tumbling window with a period of 5 seconds is
shown in figure 2.11.

2.12.2 Sliding windows

0

e1 e2

5

e3 e4 e5 e6

10

e7 e8 e9

15

e10 e11

Time

Figure 2.12: Example of a sliding window.

Sliding windows are of a defined length, however the bounds of that fixed length move
forward by a fixed slide interval or count. For example, a sliding window with a length of
10 seconds and a slide interval of 5 seconds is shown in figure 2.12. A tumbling window can
be thought of as a sliding window where the slide interval is equal to the window length.
The main differences between sliding and tumbling windows is the higher completion
frequency and that events can appear in multiple windows.

2.12.3 Windowing in Apache Storm

Storm provides native support15 for windowing operations via an interface that is added
to the bolt implementations. This alters the bolt’s execute method to receive a collection
of tuples representing a window. Storm provides functionality for both time and count
based window length and slide interval; it also allows mixing the two, i.e. having a count
based window length with a time based slide interval (which is useful if a low arrival rate
means the count length is never reached) and visa versa.

Internally a special type of executor implementation is used for windowed bolts that uses
an additional internal queue to store incoming tuples once they are processed off the ERQ.
This windowed executor is provided with a trigger policy which dictates when a window
is complete according to the window length and slide interval parameters supplied by
the user. Once a window is triggered, the corresponding tuples are extracted from the
window queue and given to the windowed bolt execute method. There is a corresponding
expiration policy that will trigger when a tuple is not a member of any pending window
(in the sliding case) and will then remove these expired tuples from the window queue.

15http://storm.apache.org/releases/1.2.2/Windowing.html

http://storm.apache.org/releases/1.2.2/Windowing.html


2.13. STORM METRICS 45

Time based windowing in Storm can use either processing time, which is the time the
tuple was received into the executor (using the clock on the worker node), or event time,
which is a time stamp provided by the source of the original message entering the topology.
For example, this could be the time a measurement was taken at a remote sensor or the
time stamp on a log entry. The user can supply a field name to the windowed bolt to
designate the appropriate event time tuple field. Using event time instead of processing
time introduces several challenges around dealing with tuples that arrive out of order or
late, which in networked environments can happen often. To deal with these situations
Storm employs watermarks and other approaches common to DSPSs like Apache Flink
and Spark. However, a full description of the operation of these event time methods is not
relevant to the performance modelling effort and therefore the reader is referred to the
Storm documentation and in-depth texts such as Kleppmann (2017) and Lax et al. (2018)
for more details.

The windowing functionality in Storm currently provides an at least once delivery guarantee
(see section 2.9). The values emitted from the windowed bolt’s execute method are
automatically anchored to all the tuples in the input window collection. The downstream
bolts are expected to acknowledge the received tuple (i.e the tuple emitted from the
windowed bolt) to complete the tuple tree. If not, the tuples will be replayed and the
windowing computation will be re-evaluated. The tuples in the window are automatically
acknowledged when they fall out of the effective window period, i.e. after window length +
sliding interval has passed.

2.13 Storm Metrics

Storm provides a wide variety of metrics on the performance of Topology elements.

2.13.1 Accessing metrics

There are two ways to access Storm’s topology metrics. The Nimbus node’s API provides
summary metrics with sliding windows of 1, 3 and 10 hours as well as an All Time metric
aggregated over the lifetime of the topology. These Nimbus metrics are easy to access
via the API (REST16 or Thrift17 based), however they are summarised on a per executor
basis and only over the predefined windows described above.

The second method of obtaining topology metrics is to create a custom Metrics Consumer
instance. This class is then registered as a consumer with Storm when the topology is
created, and the metrics consumer instance is added as a bolt into the topology with a
direct stream (see section 2.5) from every other component.

16https://storm.apache.org/releases/1.2.2/STORM-UI-REST-API.html
17http://thrift.apache.org/

https://storm.apache.org/releases/1.2.2/STORM-UI-REST-API.html
http://thrift.apache.org/


46 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

The advantage of creating a custom metrics consumer is that metrics can be accessed
with a more fine grained aggregation period. In Storm, metrics are aggregated over a
configurable number of seconds (referred to as the metric bucket period), count metrics are
summed and temporal metrics (such as latency measures) are averaged over this period
and the resulting value reported to the registered metrics consumers and the Nimbus
Node. For the Nimbus Metrics these values are summed/averaged again within the sliding
windows. However, custom metrics consumers have access to the individual metric buckets.
A further advantage to using a custom consumer is that many of the metrics are reported
at the task level, compared to the Nimbus Metrics which are summarised at the executor
level (averaged over all tasks within each executor).

2.13.2 Component metrics

The default Storm performance metrics, provided for the component (spout and bolt)
executors in the topology, are described below. Some of these metrics only apply to specific
component types, which preface the metric name.

Bolts: Process latency

This metric is defined as the time (in milliseconds) between the task starting the function
that processes an incoming tuple (the execute method) and the calling of the ack (ac-
knowledge) or fail functions to indicate that the tuple processing is complete or has failed,
respectively.

Bolts: Execute latency

This is similar to process latency and is defined as the total time that the task’s execute
method runs for. This includes any additional processing that is performed after a tuple is
emitted and acknowledged (or failed) by the task, such as database connection clean up.

Spouts: Complete latency

This is Storm’s measure of the end-to-end latency of a topology and is part of its guaranteed
message processing system (see section 2.9). Once all tuples that result from a source
tuple have been processed, the Acker will register the completion and issue an ack_ack
tuple to the spout task that produced the source tuple.

Previous to Storm version 1.0.3, the spout would receive the ack_ack, record a local time
stamp, compare this to the local time stamp it recorded when the source spout tuple
was originally emitted, and report the difference as the complete latency. This system
ensured that timestamps would always be compared on the same worker node they were
created on, thus avoiding clock synchronisation issues. However, this also meant that the



2.13. STORM METRICS 47

complete latency included transfer times from the final bolt component to the Acker, the
processing time at the Acker, transfer time from the Acker to the spout and also queueing
and processing time at the spout. This final element proves to be an issue as, due to
the design of the spout components in Storm, incoming ack_ack messages and outgoing
tuples cannot be processed concurrently. Consequently, for highly active spouts which are
busy producing large volumes of source tuples, ack_ack tuples were queued for significant
amounts of time. As the complete latency clock was not stopped until these tuples were
processed by the spout, this led to artificially long complete latency values.

To address this issue, Storm versions 1.0.3 and above start and stop the complete latency
clock in the Acker. When a source tuple’s ack_init message, sent by the spout that
created it, is first received by the Acker it adds the current time to its internal map along
with the source tuple’s message identifier. Therefore, when a source tuple completion is
detected the current time can be compared against the stored start time and the delta
between them reported as the complete latency. This avoids the need to consider clock
synchronisation as the time comparison will always occur on the same Acker and therefore
the same worker node.

This approach means that queues at the spout are avoided and some of the travel times
(from Acker to spout) are excluded. However, this change of clock start/stop point has
consequences for the interpretation of what the complete latency represents. As the clock
is not started until the Acker receives the ack_init message, the measured complete latency
will be shortened by the time it takes the message to travel from the source spout to the
Acker, queue at the Acker and then be served. Conversely, as the clock is not stopped
until the ack_ack from the final child tuple is received at the Acker, the complete latency
will be lengthened by the time taken to travel from the final bolt executor to the Acker,
queue at the Acker and then be served. Figure 2.13 illustrates the difference between the
true topology end-to-end latency (top line) and the measured Storm complete latency
(bottom line). If the init delay and the ack delay were of equivalent length then the
complete latency would match the topology end-to-end latency. However, depending on
the physical plan for the topology, there could be a large difference between the two delays.
For example, the spout and Acker could be in the same worker process and the final bolt
could be on another worker node entirely. This would lead to very short transfer times
for the ack_init and relatively longer transfer times for the final ack_ack. This situation
would result in the measured complete latency for that source tuple being longer than its
true end-to-end latency.

It is also worth noting that the complete latency is not a measure of the end-to-end latency
of each tuple, produced from a source tuple, it is actually a measure of the worst case
end-to-end latency for a source tuple produced from a given spout instance. As the time
delta is only calculated when the ack_val of a source tuple reaches zero, the complete



48 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

Time

init delay ack delay

Measured complete latency

Topology end-to-end latency

ack_init ack_ack 

Figure 2.13: The topology end-to-end latency shown against the measured complete latency
in Storm (version 1.0.3 and above).

latency is (taking into account the discussion above, illustrated in figure 2.13) the time
between source tuple emission and the completion of the last child tuple from all tuples
descending from that source tuple. Therefore, if a particular child tuple is routed across a
costly remote connection to a final bolt instance and/or has to wait for a significant amount
of time at that instance, and all other child tuples from that source take a much shorter
route, then the complete latency will be significantly extended compared to the prevailing
end-to-end latency of the other tuples from that source. Figure 2.14 illustrates the effect
of delayed child tuples on the measured complete latency and shows how the complete
latency measure is susceptible to stragglers and represents the longest path through the
topology.

It is also important to bear in mind that the complete latency measure is averaged across
the metric bucket period and also across all possible paths through the topology logical
plan from a given spout instance. Therefore, if there are significant differences in the
processing time between different paths, the complete latency will average across these.
This makes the complete latency susceptible to positive skew as outliers can “pollute” the
average over the metric bucket period.

Spouts and bolts: Throughput

The executor throughput metrics come in three forms:

Emitted The count of the number of times the emit method (of the object which
transfers tuple out of executors) is called by the task. This will include tuples not emitted
to another component (i.e. those leaving the topology), as well as those that fail to transfer



2.13. STORM METRICS 49

Time

Reported complete latency

ack_init last ack_ack

Figure 2.14: The tree produced as tuples are anchored and acknowleged, showing the
effect of delayed child tuples on the complete latency.

correctly to other components.

Executed This is a count of the number of times a task’s execute method is called. This
count will include all attempts to process a tuple, including those that fail to emit and
those that fail to transfer successfully to other components.

Transferred The count of the number of tuples that successfully move from this task
to another within the topology (are acknowledged).

2.13.3 Queue metrics

Metrics for the ERQ and ESQ of each executor and the WPTQ of each worker process
(see section 2.7) are recorded by default. Unlike the metrics in section 2.13.2 above, these
are not recorded for each individual task but are linked to each executor. Metrics are
reported for each queue every metric bucket period.

Arrival rate

This is the average number of individual tuples arriving into each of the queues per second.
It is important to understand where this measure is recorded. The counts of tuple arrivals
are not made at the input batch (see figure 2.4), they are made as objects are placed into
the slots of the Disruptor Ring Buffer. Storm will inspect each object placed onto the
Ring Buffer — which could be an individual tuple (for the ESQ), a list of tuples (for the
ERQ) or a map from task identifier to a list of tuples (for the WPTQ) — and ascertains



50 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE

how many individual tuples that object contains. This is added to a total for the queue
and then an average calculated for the configured metric bucket period.

Prior to Apache Storm version 1.1.1, the system contained a bug18 where it would count
one object, being placed into a Ring Buffer slot, as one tuple. Under high traffic loads
this meant that the arrival rate for a given queue would be significantly under reported by
Storm, as the input tuple lists into the ERQ would contain many individual tuples which
were not logged in the arrival rate metrics. The author is very grateful to Tang Kailin and
the other Storm developers for tracking down and solving this particular issue.

Population

The Disruptor queue reports several population values:

• Tuple population: This is the number of individual tuples waiting within the Ring
Buffer.

• Object population: This is the number of occupied slots within the Ring Buffer.
• Overflow population: This is the number of objects currently within the batches in

the overflow queue, this includes the input batch (see figure 2.4).

These values represent a snapshot of the various populations: they are sampled once each
metric bucket period and are not averages over that timespan.

2.13.4 Custom metrics

As well as the metrics defined above, Storm allows users to define their own custom metrics
which can be reported to the main Storm system for display in the UI and captured by a
custom metrics consumer in the same way as the default metrics.

Once a custom metric is created it is up to the user to write logic to update this metric in
the topology components as Storm does not offer a way to do this automatically.

2.13.5 Metrics sample rates

In order to reduce the processing load of calculating the system metrics Storm samples
the trigger events for the metrics at a user definable percentage. By default only 5% of
tuple are used to calculate the metrics. For example, if the default 5% sampling rate is
used, the system will randomly select 1 tuple out of the next 20 to increase the metrics by
20. The implication of this is that reported metrics may not be a true representation of
the system state. The sample tuple could be logged and then processing stopped in the
executor, yet an additional 19 tuples were logged with the metrics system.

18see https://issues.apache.org/jira/browse/STORM-2557



2.14. SUMMARY 51

To gain an accurate picture of the topology’s performance, the sampling rate can be set to
100%. However, this means that every tuple will trigger the metrics update logic and will
increase the load on the executors.

2.14 Summary

This chapter has covered the internal operations of the Apache Storm DSPS. The key
elements of which are:

• How the topology components are parallelised (section 2.4) and how the component’s
tasks (section 2.4.2) facilitate the partitioning of state.

• How the types of the connections between components can effect tuple flow (sec-
tion 2.5).

• The queue implementation that Storm uses (section 2.7) and how, with the Disruptor
queue’s batching and complex queue flushing behaviour, this is far from a simple
queueing system.

• How the flow of tuples, as they pass through the executors (section 2.8.1) and worker
processes (section 2.8.2) and the additional routing and batching behaviour can
effect tuple flow.

• Storm’s message guarantee system (section 2.9) and how this effects the interpretation
of Storm’s measure of end-to-end latency: complete latency (section 2.13.2).

• How batching tuples into windows within components can takes several different
forms (section 2.12).

• The various metrics for service time, arrival rate and throughput that Storm provides
(section 2.13).

These key behaviours and their associated complexities are worth bearing in mind during
the discussion of previous performance modelling approaches for DSPSs given in the
following chapter.



52 CHAPTER 2. DISTRIBUTED STREAM PROCESSING ARCHITECTURE



Chapter 3

Related Work

This chapter seeks to provide context for the contributions presented in this thesis by
examining both the relevant background literature and more up-to-date related works. It
starts with an analysis of the literature on auto-scaling of distributed stream processing
systems (DSPSs), beginning with systems based on reactive thresholds and then moving on
to those utilising application performance models including queueing theory and machine
learning based approaches.

To the best of our knowledge the mainstream1 DSPSs have limited or no implemented
mechanisms to automatically scale their operations. However, there has been significant
research into the problem of optimal scheduling for DSPSs.

3.1 Threshold Based Auto-scaling

Heinze et al. have done significant research in the area of elastic scaling techniques for
stream processing systems. Using their prototype complex event processing (CEP) engine,
FUGU (Heinze et al., 2013), they have developed placement algorithms for the streaming
operators (the processing units of the DSPS, like the executors in Apache Storm). They
also developed a scaling decision system that can optimise their engine with regard to a
service level agreement (SLA) based on sojourn time (Heinze et al., 2015). They have
incorporated auto-scaling systems based on thresholds and have added the ability to
tune the parameters of these thresholds based on previous scaling decisions, a form of
reinforcement-learning discussed later in this chapter (Heinze et al., 2015). The FUGU
system, while it does take into account performance SLAs and provides elastic scaling
features, does not focus on anticipating increases in incoming workload or attempt to
produce a performance model of the streaming system to aid in scaling decisions (Heinze,
Pappalardo, et al., 2014). Their system simply changes the topology configuration until

1Apache Storm, Spark and Flink

53



54 CHAPTER 3. RELATED WORK

the SLA is met.

With respect to the mainstream DSPSs, Apache Storm (Toshniwal et al., 2014) is well
represented in the literature. Aniello et al. (2013) proposed a two-stage optimised version
of Storm’s default round-robin scheduler. Their first stage works off-line at the time of
initial deployment, dividing the graph of streaming operations up into stages (groups)
of operations that are strongly linked. These stages are then deployed on the same, or
proximate, worker nodes to minimise network latency. It should be noted that the staging
system by Aniello et al. is only applicable to acyclic work flows (this would exclude
many machine learning algorithms or systems that incorporate feedback) and has no prior
knowledge of the actual network performance of the operators. The second stage of their
optimiser works on-line as Storm is running, monitoring central processing unit (CPU) load
on the worker nodes and network traffic between operators (requiring the use of specifically
modified classes within the streaming work flow). Their system then periodically runs an
optimisation algorithm, based on the latest metrics, to organise the operators.

Xu et al. (2014) also developed an optimised scheduler. Their approach minimises network
distance between connected operators which exchange high traffic or large payloads. Their
system is also aware of worker node resource usage and employs an algorithm designed
to minimise network distance while preventing worker node overload. Their monitoring
system again requires modification of the basic Storm code. This includes sending a
signal to their control system every time an operator emits a message, representing a
significant communication overhead. Their system, similar to that of Aniello et al. (2013),
periodically reads the latest network latency and resource usages and runs their scheduling
algorithm to create a new physical plan. Later, a different approach to the same problem
was investigated by Eskandari et al. (2016), who created a scheduler that would analyse
historical metrics data and use graph partitioning algorithms to minimise remote edges
between high-traffic nodes in the topology’s physical plan. They also attempt to estimate
the required number of worker nodes to prevent the proposed physical plan overloading
the available worker nodes.

There are several more examples of iterative systems that use simplistic measures to
optimise Apache Storm topologies. Van Der Veen et al. (2015) use a monitor, analyse,
plan, execute (MAPE) loop based on simple boundary checks (CPU usage, throughput, etc.)
to decide when and how to scale the topology. Masotto et al. (2015) use a similar MAPE
approach where they continually rebalance the Storm topology and attempt to create a
physical plan which minimises tuple waiting times at each executor receive queue (ERQ)
and executor send queue (ESQ). However, they treat each executor as an independent
entity and do not attempt to optimise the complete end to end latency of a topology.

Peng et al. (2015) have done significant work in the area of resource-aware scheduling in



3.1. THRESHOLD BASED AUTO-SCALING 55

Storm. They have designed a system, R-Storm, that can take any topology, including
cyclical ones, and allocate executors to worker nodes based on the current resource
availability on each node. Their system can be tuned to focus on network or processor
optimisation. However, it requires the developer to tell the scheduler what the resource and
network usage of each component will be. It further assumes that this resource usage will
not change over the lifetime of the topology regardless of incoming workload. Liu & Buyya
(2017) note this issue with the R-Storm system of Peng et al. and propose a system that
continually samples the resource usage of the Storm elements in order to dynamically make
scaling decisions. Their system, D-storm, is shown to outperform R-Storm by reducing
overall resource usage, including reducing network traffic (by over 16%).

Floratou et al. (2017) introduced an auto-scaling system, Dhalion, for Apache Heron
which is the successor to Apache Storm at Twitter and shares many characteristics with
it (see appendix D for more details). They began by defining the many benefits of an
auto-scaling system, matching some of the points raised in chapter 1, and go on to describe
how their system comprises of three distinct components: Symptom detectors, which
interface with the metrics from the DSPS and are triggered when certain conditions
are met; Diagnosers, which look for certain symptoms being triggered and attempt to
identify the cause of those symptoms; and Resolvers, which attempt to fix the cause of the
symptoms in question. Whilst this system is general in its design and highly flexible in the
way the main components can be applied to a myriad of issues, the approach to scaling
outlined in this work is rather simplistic. In essence, if the topology is not processing
input tuples at a sufficient rate, Dhalion will simply scale up all the components of a
topology by an amount proportional to the throughput deficit. If this scale up (or down,
if the throughput is significantly over target) does not meet the target, then the process
will be repeated again. As Kalavri et al. (2018) note, in their later work comparing their
own auto-scaling system’s performance to Dhalion’s, this blanket approach often leads to
extended convergence time (of the order of hours) and to significant over provisioning of
resources. Whilst Dhalion is a useful tool to implement auto-scaling in DSPSs, it would
benefit from a better informed scaling approach.

All of the systems discussed above for scaling DSPSs use, or are designed around, a
reactive approach. The state of the system is monitored and, at set intervals, or when
certain thresholds are reached, this information is used with various algorithms to create
the optimum arrangement of operators on the cluster. These systems do not require
knowledge of an output metric, such as sojourn time or throughput, in order to perform
their optimisations. For example, the algorithms that attempt to reduce network latency
between heavily connected operators have no concept of what effect reducing connection
latency for one set of operators, at the cost of extending it for others, will have on the
sojourn time of the entire topology.



56 CHAPTER 3. RELATED WORK

Whilst these systems do provide a significant increase in performance over the default
DSPS scheduler implementations they are not designed to, and therefore do not, provide
the ability to optimise DSPS topologies with respect to a quality of service (QoS) guarantee
or SLA.

3.2 Performance Model Based Auto-scaling

Many studies have realised the utility of adding a performance model to the DSPS auto-
scaling approach in order to assess the suitability of the physical plans produced by their
respective scheduler implementations. Many of the studies focus on predicting resource
(CPU, RAM, etc.) usage, which is an important factor in scaling decisions. However, in this
review we have focused on those studies that look at predicting application performance
metrics such as sojourn time or throughput of the DSPS topologies. These studies can
largely be grouped into those based on queuing theory, those based on machine learning
and those using other approaches.

3.2.1 Queueing theory

Fu et al. (2015) created a system, Dynamic Resource Scheduling (DRS), on top of the
Apache Storm DSPS that attempts to find a topology physical plan that would maintain a
response time (end-to-end latency) target for the topology. To achieve this, they modelled
the topology’s response time using a Jackson network (Jackson, 1957), specifically aM/M/c

network where each node of the network can have multiple (c) servers. In this case the
nodes are the topology components and the servers are the component’s executors. They
assume that all the servers of each node in the queueing network are load balanced, which
means this model cannot be applied to topologies with fields groupings (see section 2.5).
This is because these types of connections will distribute load based on the key (field
within the tuple) distribution within the input stream, which may be significantly biased
towards specific executors. They use their response time model, in combination with a
greedy bin packing algorithm, to select the lowest value of c for each component in the
topology that allows the response time target to be met. Whilst their system does select a
better performing physical plan than Storm’s default round-robin scheduler, the accuracy
of their response time predictions is not good. They do not report their accuracy results
directly, but their predictions appear to be between 30 and 90% under estimations of the
final measured complete latency, depending on the topology and physical plan used. The
authors put this significant under estimation down to the fact that their model does not
include network transfer latencies between worker nodes. However, whilst this will account
for some of the discrepancy, it is unlikely to explain it all — particularly given the order
of magnitude difference between the predicted and measured response times. Given that



3.2. PERFORMANCE MODEL BASED AUTO-SCALING 57

they are comparing the average sojourn time, produced by the Jackson network model,
to the complete latency which, as described in section 2.13.2, is a worst-case measure of
source tuple sojourn time, it is likely that a large amount of their discrepancy was due
to the nature of their validation measure. Also, given the behaviour of the executor and
worker process queues and their internal processes (described in sections 2.7, 2.8.1, 2.8.2),
it is likely that the M/M/c queueing model is a poor approximation of the behaviour of
the queuing network nodes, something the results from this study seem to bear out.

Lohrmann et al. (2015) followed a similar approach to Fu et al. to facilitate model-based
auto-scaling for Apache Storm and Nephele2. They used a queuing theory model to
predict topology response time and a bin packing algorithm to create a physical plan
which maintains a response time target whilst minimising the required resources. However,
unlike Fu et al., who used a M/M/c (Poisson distributed arrival rates with exponentially
distributed service times) Jackson network, Lohrmann et al. use a queuing model with
general arrival rate and service time distributions. They assume that each executor is
a single sever G/G/1 queue and use the topology logical plan as the queueing network.
They further assume that the load on each executor of a given topology component will be
the same. Similar to Fu et al. this means that their topologies can only use shuffle-grouped
connections between components. They also assume that all worker nodes in the cluster
are homogeneous such that, regardless of where an executor is located, its service time
distribution can be assumed to be constant. They model the response time of the G/G/1
executor queues by using the Kingman approximation (Kingman, 1961). This formula
allows for the estimation of the mean response time, provided that information on the
shape of the arrival rate and service time distributions are available and that the queue
is close to saturation (experiencing heavy incoming traffic). Their system monitors the
end-to-end latency of the topology and if the latency target is breached will attempt
to change the parallelism of the components, running each new topology configuration
through their model, until they find a configuration that will meet the target latency.
They do not report the accuracy of their latency predictions, only how their scaling system
allows latency targets to be maintained. They do state that their system continuously
models the response time of each executor and produces a correction factor between the
predicted and measured latency for that executor. It is not clear how they measure the
latency across a Storm executor: as described in section 2.8.1 there are several elements
which contribute to the latency experienced by a tuple moving through an executor, not all
of which provide latency metrics by default. Assuming they have an accurate measure of
this time, it is likely that this correction factor is compensating for all the latency sources
they are not modelling, such as delays in the worker processes and network transfer latency.
It is not clear how this correction factor evolves over time with changing conditions or

2Nephele was one of the research projects that formed the basis for the Apache Flink DSPS.



58 CHAPTER 3. RELATED WORK

how the correction factor may change as a result of a proposed topology configuration
change. It seems that the authors have assumed that the correction factor will be constant,
regardless of the proposed topology physical plan, which seems unlikely given the amount
of potential variance it contains. Also, despite having both the predicted and measured
latency values (required to calculate the correction factor) they do not report a latency
prediction accuracy.

De Matteis & Mencagli (2016) use a model predictive control (MPC) control approach
(often employed in process control in manufacturing) to DSPS auto-scaling. They use
queueing theory models to predict the effects on processing latency of changes in the DSPS
topology configuration. They also employ various other techniques to predict resource
usage of the proposed changes. They predict the incoming workload into the DSPS using
time series forecasting methods. They do not specify which methods they use or provide
measures of their accuracy. However, they do mention that it becomes less accurate when
the workload is more variable. They use this prediction of incoming workload with their
latency performance model to assess if a latency SLA will be breached. The time horizon
for these forward predictions is not mentioned but it is implied that it is very short (of
the order of several tuple processing times). Their latency model assumes each copy
of an operator (the equivalent of the executors of a component in Apache Storm) can
be modelled as a G/G/1 queue and, like Lohrmann et al. (2015), they use Kingman’s
approximation to find the sojourn time for the operator replica. Their model only applies
to a single component with multiple replicas and not to a complex directed graph (DiG)
of components; they assume that all replicas will receive an even share of the incoming
load and therefore their approach only applies to shuffle-grouped connections and cannot
cope with key based distribution. As with Lohrmann et al. they account for errors in
their latency model by computing a correction factor between the predicted and measured
latency. As stated above, this is likely to cover a large number of missing sources of latency
(some of which are unlikely to be linear) and so encapsulating them in a single factor seems
unreasonable. It is also worth noting that, as they do not assess the accuracy of their
forward workload prediction, this correction factor also encapsulates the errors in that
workload prediction. They do not report accuracy measures for their latency although,
as discussed above, they presumably had access to them as part of the correction factor
calculations and only report the performance of their auto-scheduling implementation.

With a similar goal to Fu et al. and Lohrmann et al., Vakilinia et al. (2016) explore several
queuing models which allow for general arrival rate and service time distributions. They
state evidence from previous research that “the task response time of stream process [sic]
is exponentially distributed” and therefore that they can use a G/M/c queuing model to
represent the components of a topology (where c is the number of executors assigned to
each component). For occasions when the service time assumption above breaks down they



3.2. PERFORMANCE MODEL BASED AUTO-SCALING 59

also looked at the G/G/c queueing model but note that, as it is analytically intractable,
they look only at its upper bound. Again, they do not give any accuracy measures for
their topology performance model and instead focus on how the model lets them choose
a better physical plan than the default round-robin scheduler. It is likely, as with Fu et
al. and their DRS system, that an X/X/c model for topology components is too general
and does not account for the variation that can occur when executors (the servers of the
queuing system) are co-located on worker processes with diverse combinations of executors
from other components.

All the Apache Storm latency models based on queueing theory (described above) assume
overly simplistic behaviour for the executors within the topology. The batching behaviour
of the Disruptor queue (see section 2.7) has been present in the Storm codebase since it
was first open-sourced in 2013, and many other DSPSs and network clients implement
some sort of batching to improve throughput. It therefore seems strange that none of
the approaches above investigated batch-based queueing models, of which there are many
variants (Mitrani, 1998; Gross et al., 2008). It is also disappointing that almost none of
the studies report the accuracy of their latency performance models. Although it could
be argued that the focus of their research was on optimal scheduling or resource usage it
would have been useful, for those of us concerned with modelling application performance,
to have an indication of the effectiveness of the applied models. The exception to the
rule is Fu et al. (2015), who show that a M/M/c open Jackson network appears to be a
poor approximation for an Apache Storm topology. However, Fu et al. — as well as many
of the other studies mentioned — appear to use Storm’s complete latency metric (see
section 2.13.2) to assess their predictions. As mentioned previously, this measure is highly
susceptible to positive skew due to outlier measurements. This fact may well explain
the large under-predictions reported by Fu et al.. It may also explain why, if they were
significantly under-estimating the reported complete latency, others did not report the
accuracy of their predictions. If they were putting their test topologies under particularly
high load, some tuples may have been delayed, skewing the ground truth measure. Further
discussion of this issue is given in section 5.7.1.

3.2.2 Machine learning

As well as the heuristic-based algorithms and queueing theory based performance models
discussed above, there are several examples in the literature of applying a machine learning
approach to DSPS auto-scaling.

Lorido-Botran et al. (2014) provided a summary of various auto-scaling strategies for cloud
based applications and covered reinforcement-learning in detail. Essentially reinforcement-
learning, is a method by which the auto-scaler learns the best course of action for a given



60 CHAPTER 3. RELATED WORK

state via a trial-and-error approach. A course of action is chosen and the effect of that
action on the current state is recorded and passed through a cost function. In future
iterations the auto-scaler uses the cost of past actions to choose the action for the current
state. In this way, the best course of action is reinforced over time and many different
approaches have been used to choose this correct course (Barrett et al., 2013; Tesauro et
al., 2006; Bu et al., 2013).

Specific to DSPSs, T. Li et al. (2016) used a supervised-learning approach involving
a support-vector-regression (SVR) model which takes various parameters of a running
Apache Storm topology, trains a model and then uses the proposed changes to the topology
configuration (from a newly proposed physical plan) to predict the expected end-to-end
latency. The use of SVR allows them to create a high-dimensional model with parameters
which are not linearly related. They report a prediction accuracy of greater than 83% for
the three test topologies in their validation and show how this model allows their greedy
bin packing algorithm to iterate to a physical plan with the lowest possible end-to-end
latency for a given set of available resources (worker nodes). It is worth noting that their
test topologies use only shuffle-grouped connections and they assume that all executors
of a component will receive equal loads. Whilst their accuracy results are impressive,
beyond saying that random configurations were generated they do not give any details
on the length or complexity of their training phase. For example, the number of training
configurations or the parameter ranges covered are not reported and they also do not state
if the model was tested and trained on the same set of configurations. It would be useful
to know how accurate the latency predictions are for topology configurations that were
not in the training set and also to have an idea of how long a reasonable training session
would be for this system.

Foroni et al. (2018) pursued a similar approach to Li et al., but applied to Apache
Flink. They use both a linear-least-squares and support-vector-machine (SVM) based
approach to create models mapping input workload to various application-level performance
metrics such as topology throughput and sojourn time. They use the models with their
monitoring framework, to tweak the various parameters that Apache Flink exposes until
the performance targets are reached. As with Li et al., they do not report any accuracy
measures for their performance model and only show how their scheduling implementation
is better than the default Flink round-robin version.

Jamshidi & Casale (2016) propose a Bayesian optimisation approach, using Gaussian
processes (GPs), to choose an Apache Storm topology configuration to meet a given
performance target. They highlight how the relationship between the topology configuration
and end-to-end latency is non-linear and multi-modal, and how the performance of one
element of the topology will influence the others in the topology and therefore that acting
on only one parameter at a time may not lead to a global optimum. Their GP models are



3.2. PERFORMANCE MODEL BASED AUTO-SCALING 61

trained on many topology parameters and they treat the topology itself as a black box.
They show their model’s root mean squared error (RMSE) for several of their algorithms as
a function of the number of modelling iterations (each 5 minutes long). For example, one
of their algorithms, Branin, for a simple word-counting topology, starts with a RMSE of
over 100 after 5 iterations (25 mins) and drops to less than 0.1 after 100 (8 hours 20 mins),
whilst another, Dixon-Szego, starts at 2.5 after 5 iterations and drops to a consistent
0.7 after 40 (3 hours 20 mins). This is a good level of accuracy, however to reach it a
significant period of training time is required. It should be noted that these levels are for
a simple word-counting topology with a low level of parallelism. When the complexity of
the topology is increased the best achieved RMSE after 80 iterations (6 hours 40 mins)
increases from 10−3 to 20. As you would expect, other, more complex topologies suffer
even larger errors (up to a RMSE of 100) even after hundreds of iterations. However, it is
refreshing to have accuracy results to compare and their method does show high accuracy
for simpler, linear topologies. Another significant feature of their method, besides using
a non-linear modelling approach, is that it provides a measure of uncertainty with each
performance estimate. This uncertainty information allows their optimisation system to
make an informed decision on whether to act on a given prediction for a physical plan.

Lombardi et al. (2019), building on earlier work (Lombardi et al., 2018), present an
auto-scaling system, PASCAL, for Apache Storm (and the Apache Cassandra3 distributed
database) based on artificial neural networks. They train the neural network on past
workload traces to create a future workload prediction. They train another neural network
on historic performance metrics from a running topology in order to predict the resource
usage and performance of a proposed physical plan. As with Li et al., they do not report
the accuracy of their performance model, although they do state that their workload
predictor (tested against seasonal workloads with a regular period) had a RMSE of 3%.
They focus their results on their scheduling implementation, which is able to create a
physical plan that maintains a sojourn time target whilst minimising resource (in this
case CPU load) usage. Again, as with Li et al., they do not give details on the overall
length of the training phase required to create their models or whether test configurations
were present in the training data. Their system was tested on a realistic, linear topology
and does implement proactive scaling. However, there are no accuracy measures for their
topology performance modelling.

Gautam & Basava (2019) use a similar approach to that of J. Li et al. (2016) and
Jamshidi & Casale (2016), but applied to Apache Heron (Storm’s successor). They use
SVR in combination with GP models to predict the resource usage of proposed Heron
topology physical plans and also predict the execute latency of the topology, which is the
time taken for each instance (Heron’s equivalent of Storm’s executors) in the topology

3https://cassandra.apache.org/

https://cassandra.apache.org/


62 CHAPTER 3. RELATED WORK

to process incoming tuples. They do not appear to predict the overall sojourn time or
throughput of a Heron topology. They test against a wide variety of topologies and report
prediction accuracies of up to 81% for their resource usage estimations. They do not report
accuracy figures for their execution latency predictions, but do show charts that show their
modelling approach produces good accuracy for simple topologies with some significant
over-estimation of the latency for more complex topologies. There is no discussion of the
amount of training data required or comparisons of the prediction accuracy for seen and
unseen physical plans.

Key to all reinforcement-learning methods is a cost function to allow the system to learn
the best strategies. In the systems reviewed by Lorido-Botran et al. this is either based on
resource usage or application metrics resulting from the deployed operator plan and/or
horizontal scaling of that plan. The issue with this approach, which is identified by Lorido-
Botran et al. and is discussed in section 1.2, is that it requires a physical plan to be deployed
and run before its effectiveness can be assessed, leading to long training periods and issues
when unique states (that are not like any previously run state) are encountered. It is
encouraging that several of the studies discussed above do report prediction accuracy for
their performance models. However, it is disappointing that none of the studies mentioned
above, with the exception of Jamshidi & Casale (2016), give details of the length of the
training period required to reach the prediction accuracy they report. This makes it
difficult to assess the trade-off between the extended training period and the accuracy of
machine-learning based approaches compared to other modelling methods. In the case
of Jamshidi et al. they can obtain good prediction accuracy but require between 3 and 9
hours to obtain them, even on simple word-counting topologies.

3.2.3 Other approaches

Farahabady et al. (2016) use a MPC approach to auto-scaling Apache Storm topologies.
They use a performance model that predicts the uncontrollable variables, such as the
arrival rate into the topology, which allows the estimation of the effect of those variables
on the topology’s performance to be gauged. It then follows the MPC processes to select
the controllable variables, primarily the component parallelism and number of worker
nodes, such that a given performance target can be met. They predict incoming workload
into the topology using an auto-regressive integrated moving average (ARIMA) time-series
model, however they do not give any details of the performance model they use to gauge
the effect of this arrival rate, instead referring to general texts on MPC. Consulting these
referenced texts seems to suggest that the performance model is linear in nature, relating
incoming arrival rate to end-to-end latency. Their results show that the MPC controller
performs significantly better than Storm’s default round-robin scheduler at maximising
resource utilisation whilst minimising end-to-end latency QoS targets. However, they do



3.2. PERFORMANCE MODEL BASED AUTO-SCALING 63

not report accuracy measures for their system performance model. The fact that they
minimise the breaches of a latency target does seem to suggest that the model has some
useful predictive properties, however the fact that they still report breaches of the target,
up to 18% of the time, indicates that there must be errors in the predictions. A further
point to note with this system is that it is one of the few systems that provide a proactive,
rather than reactive, auto-scaling approach. Their use of an ARIMA model to predict
incoming workload allows the scaling operations to happen before the workload arrives,
limiting QoS violations.

Sun et al. (2018) created a DSPS auto-scaling system, E-Stream, using Apache Storm
as a test bed. This system uses a topology performance model, developed in their earlier
work (Sun & Huang, 2016), and is based on both sojourn time, which they refer to as the
makespan, of the topology and its resource usage. Their sojourn time model calculates a
processing cost (in milliseconds) for each vertex and each edge between vertices executors
in the topology’s logical plan. It then creates a timeline through the logical plan by
identifying the critical path (those nodes which will dominate the sojourn time measure).
They calculate the makespan of the topology from this critical path. They use this model
to compare the expected sojourn time of each of the physical plans produced by their
scheduling implementation and select the one with the fastest performance and lowest
resource usage.

The key components of the topology performance model, created by Sun et al., are the
vertex processing and edge communication cost functions. The vertex cost function is
based on the number of instructions (in the case of Apache Storm these are Java byte
code instructions) that the vertex contains, scaled by the vertex’s processing ability which
is the number of instructions per second it can process on a given worker node. They
scale the processing ability by a performance degradation percentage, which is a parameter
that captures how adding more executors to a worker process can result in the executor
latency extending due to the multi-threaded nature of the worker processes. Although
they never explain how this parameter is calculated, this is nevertheless an important
insight and one that is not addressed in other studies featuring Apache Storm. The use of
instructions and instruction-processing rate to infer a processing time is an interesting
one and could allow the extension of the execute latency because of thread-pausing to
be excluded. However, it is not clear how they identify the number of instructions for a
user defined bolt instance or how they account for execution branches (conditional code
blocks such as if statements) which will form part of the instruction count but may not be
executed. Furthermore, it is not clear why you would want to exclude the thread pausing
effect as it will be experienced by tuples moving through the topology and therefore will
contribute to the measured sojourn time (in this case, complete latency) reported by
Storm. Indeed, the performance degradation percentage seems to add the thread pausing



64 CHAPTER 3. RELATED WORK

effect back into the processing cost measure. However, as they do not explain how they
calculate the degradation percentage it is difficult to discern if this is actually the case.
Similarly, their edge communication cost function depends on this degradation percentage
and, whilst it is important to account for the fact that remote transfers between worker
processes could have a significant effect on the sojourn time, without an explanation of
how they calculate this it is hard to gauge its effectiveness. Whilst their model includes
some innovative features, they do not report any accuracy measures for their sojourn time
predictions. They only report the improvement over Storm’s default round-robin scheduler
that their performance-model based scheduler implementation achieves.

Kalavri et al. (2018) proposed an auto-scaling system (DS2) for Apache Flink and their
own Timely DataFlow DSPS, which is reactive and will trigger when the throughput of
a system drops below a given threshold. DS2 creates a model of the streaming topology
based on the useful time each operator (the Flink equivalent of Storm’s executors) in the
topology spends processing tuples. They define this useful time as the fastest a topology
operator could process a tuple and this includes the de-serialisation of the input tuple,
user-defined logic processing and serialisation of the output tuple(s). From this useful
time they calculate the true processing (input) rate of an operator and its true output
rate. When their system detects that throughput targets are not being met, they calculate
the current true output rate of each operator of each component in the topology. The true
output rate is calculated from historical metrics data from the last time step: using this
and the true processing rate of each downstream operator they calculate the number of
operators needed to match the corresponding upstream output rate. This assumes, which
they freely admit, that each operator will receive the same load and that the aggregate
processing rate for a component is a linear combination of its operator’s processing rates.
This assumption means that their approach could not be used for topologies with key-based
connection routing (referred to as fields grouping in Apache Storm). Their approach shows
significant improvements in the time taken to find a physical plan to reach throughput
targets compared to current auto-scaling systems like Dhalion (Floratou et al., 2017) (1
min for DS2 vs 33 min 20 sec) and avoids over provisioning resources to meet those targets
(30 operator replicas for DS2 vs 52 for Dhalion). Whilst this method has its limitations —
for example, it is reactive and is not able to simulate the effect of higher input traffic on
the throughput of the topology — it is strong evidence for the significant speed advantage
that is gained by adding performance modelling (of any kind) to the scaling decision loop.

3.3 Summary

The studies reviewed above show how much of the early work on auto-scaling for DSPSs
was focused on threshold-based reactive systems that would respond to overload within



3.3. SUMMARY 65

the topology by adding resource and finding one of many optimal physical plans. However,
as noted by Kalavri et al. (2018) this results in a system “which is unable to consider
the structure of the dataflow graph or computational dependencies among operators”.
This succinctly describes the issue faced by auto-scaling systems that do not utilise some
form of performance model: they are effectively wandering in the dark trying to find a
solution that meets the required performance target. As Kalavri et al. highlighted in their
comparison with Dhalion, this can lead to slow converging and inefficient physical plans.

The advantages of providing a performance model as part of the auto-scaling system are
well established in the studies described in section 3.2. Almost all demonstrate the ability
to select a better-performing plan than the default scheduler and in some cases do this
whilst maintaining a performance target, be it latency/throughput, resource use or both.
However, there is a general lack of focus on the accuracy of their performance predictions,
particularly the application-level measures such as sojourn time and throughput. For
those studies that do not provide accuracy measures for their performance predictions,
this can partially be attributed to their focus on their scheduling implementations. If a
performance model produces significant errors then it is likely to produce these for every
physical plan. Therefore, provided that the error is the same for each proposed physical
plan, it is largely irrelevant if selecting the best plan is the priority. However, this de
facto assumption of consistent error, regardless of the physical plan, is a strong one. Many
aspects of a physical plan can have significant performance effects, and assuming a linear
relationship between a given model’s error and all the possible parameters of a given
physical plan seems unreasonable. Furthermore, maintaining a given performance target
is clearly more difficult if you do not know the accuracy of the performance model.

This seems to be more of a problem for those studies using a classical queueing theory
approach. The few studies that did report accuracy measures for their predictions showed
significant under-predictions of the sojourn time. As discussed above this could be the
result of several factors including ignoring the batch processing that takes place at a
low level within many DSPSs, particularly in Storm executors, and using the complete
latency as a validation measure, which is particularly susceptible to positive skew. It is
also important to note that none of the queueing theory based models took into account
the DSPS system components that could add additional latency. For example, in Apache
Storm, the executor send thread (EST) (see section 2.8.1) and worker process send thread
(WPST) (see section 2.8.2) both contain queues and processes that will add additional
delays. None of the studies that used Storm as a test-bed included these elements. It seems
likely that, before this approach can begin to deliver more accurate results, more-advanced
queueing models and queueing network representations would need to be investigated.
However, the advantage of using a queueing theory modelling approach is that it allows
the encoding of many of the internal characteristics directly into the model. This means



66 CHAPTER 3. RELATED WORK

that, theoretically, these models could function on a relatively small amount of input data.

The machine-learning based models report higher accuracy levels than those based on
queueing theory. Most models appear to use either a SVR or GP based approach, which
allows them to account for non-linear relationships between the performance (and resource
usage) of the topology and its attributes. Whilst these systems do report better accuracy
than any of the other methods reviewed, they suffer from the need for an extended training
period where sufficiently diverse topology configurations and workload conditions are seen.
Almost none of the studies describe the duration or complexity of their training periods.
However, based on the reviewed papers, it seems that a training period could be between
3 and 9 hours even for simple linear topologies. Without a more thorough investigation
of the training period requirements it is hard to reason about the trade-offs of using a
machine-learning based approach in order to gain better accuracy.

There is a common characteristic of almost all the studies mentioned above: most assume
that the processing elements of a DSPS topology receive equal load and therefore only sup-
port the modelling of topologies with components linked with shuffle-grouped connections.
This simplifies the modelling assumptions but rules out a very large class of topologies
that route tuples by key, the simplest example being the word count topology. There is
clearly a need for a performance-modelling system that can produce accurate results for
topologies with key-based (fields grouped) connections. If this model could also produce
accurate results without a significant training phase then this would go a long way towards
addressing some of the issues with the studies discussed in this review. Such a modelling
approach is the goal of this thesis.



Chapter 4

Topology Performance Modelling

This chapter describes the methodology used to model the performance of a proposed
Apache Storm topology physical plan. Specifically, we focus on the end-to-end latency,
which we define as the time from a tuple being emitted into the topology (from the spouts)
to completion of processing in the final sink component (the Acker bolts). As described
in chapter 1, distributed stream processing systems (DSPSs) are employed primarily, in
configurations like the Lambda Architecture, to provide rapid responses to queries. The
end-to-end latency of a topology is therefore of paramount importance to its users and a
common basis for performance orientated service level agreements (SLAs).

Section 4.1 gives an overview of the modelling procedure. Section 4.2 to section 4.13
cover the modelling methods for the various elements outlined in the modelling procedure.
Finally, section 4.14 summaries the modelling process.

4.1 Performance Modelling Procedure

The aim of the performance modelling is to predict the average end-to-end latency of a
proposed topology physical plan in order to aid in selecting the most appropriate physical
plan to meet a latency SLA. In order to avoid the extended training phases linked to
machine learning techniques (see chapter 3), among other reasons, a queueing theory based
approach was chosen. Section 4.1.1 describes the various approaches from queueing theory
that were investigated in order to model the topology’s end-to-end latency. A primer on
queueing theory notation and terminology is given in appendix A.

4.1.1 Modelling the topology

The end-to-end latency of a topology is a function of the delays experienced by tuples
passing though the topology’s elements, executors and worker processes. At the most basic
level we could consider, as a basis for the end-to-end latency modelling, the topology’s query

67



68 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

plan (see section 2.6.1) with each component being a multi-server queue. Alternatively,
we could use the topology’s logical plan (see section 2.6.3) and treat each executor as a
single sever queue. Regardless of which topology plan we use, they both look very similar
to a queueing network. Mitrani (1998) defines such a network as:

“. . . a connected directed graph whose nodes represent service centres. The arcs
between those nodes indicate one-step moves that jobs may make from service
centre to service centre. . . Each node has its own queue, served according to
some scheduling strategy. Jobs may be of different types and may follow
different routes through the network. . . A network is said to be ‘open’ if there
is at least one arc along which jobs enter it and one arc along which jobs leave
it, and if from every node it is possible to follow a path leading eventually out
of the network.”

Open queueing networks

Open queueing networks have analytical solutions that allow us to predict various perfor-
mance characteristics. For example, the total average network end-to-end latency W can
be found, assuming all nodes are M/M/1 queues, using:

W = 1
γ

N∑
i=1

ρi
1− ρi

(4.1)

Where γ is the sum of all external arrival rates into the network nodes and ρi is the
offered load of the ith node out of N total nodes in the network. This equation comes
from Jackson’s theorem (Jackson, 1957) (for open queueing networks) which often leads
to open queueing networks being referred to as Jackson Networks.

Equation 4.1 shows how an estimate for the end-to-end latency of a proposed physical plan
could be calculated. However, in order to be able to use this approach, several conditions
have to be met. Mitrani (1998) lists these as:

1. Every node contains a single server, with an unbounded queue which is served using
the FIFO discipline.

2. The service times at node i are distributed exponentially with mean bi (the service
rates follow a Poisson distribution with mean µi).

3. Jobs arrive into node i in an independent Poisson process with rate λi.
4. A job arriving at node i goes to node j with probability qij, regardless of its history.

The above list is the set of requirements for the simplest situation that has an analytical
solution. Scenarios involving queues other than the M/M/1 system have been investigated



4.1. PERFORMANCE MODELLING PROCEDURE 69

in the literature (Mitrani, 1998; Gross et al., 2008). However, these solutions share similar
requirements to those listed above.

Generally, point 1 stands for topologies logical plans as the executor receive queues (ERQs)
contain an unbounded overflow queue (see section 2.7) and use a FIFO discipline. The
service times however may not be exponentially distributed (see section 4.9 for more
details), which may suggest the use of a general service time solution to the open queueing
network (Meyn & Down, 1994). Point 3 requires jobs (tuples) to enter the system
according to a Poisson process which, as described in section 4.3, may not be the case for
all topologies. Point 4 is true for executor to executor communications, however these can
be different depending on the input and output streams and so the routing probabilities
may not be memoryless. Also, Jackson networks deal with jobs passing one to one from
server to server. But in Storm topologies, tuples are often aggregated (windowed) or
multiplied within the executors, which complicates things further. Add in the batching
behaviour of the Disruptor queues, as well as the batch processing of the user logic thread
(ULT) (see section 2.7 and 2.8.1), and it becomes clear that, in order to account for a
topology’s performance, a batch arrival with bulk service open generalised Jackson network
(GX/GY /1) would be required, a fact supported by the low accuracy reported by Fu et al.
(2015) and their M/M/c Jackson network (see section 3.2.1). To our knowledge no such
treatment is present in the literature.

It may be that an existing Jackson network formulation could be used as an approximation
for a Storm topology. However, they require specific criteria to be present in order to use
them and some of these criteria may be present for some topologies and not for others.
Assessing this a priori would be difficult and finding a queue network model to fit all
criteria may not be possible. Therefore, a more general approach to topology performance
modelling was pursued.

Closed queueing networks

It is also worth mentioning that as well as open queueing networks, like those discussed
above, there are networks which are ‘closed’ in nature. These networks have a fixed
population of jobs which move around the network indefinitely. This scenario has some
useful properties which allow performance measures to be derived easily (Gordon & Newell,
1967). Mean value analysis (MVA) (Reiser & Lavenberg, 1980) is one such closed queuing
network approach and has been used in DSPS performance modelling previously (Wang
et al., 2006). However, in order to use closed networks to simulate open networks, such
as Storm topologies, we have to assume that every job that leaves the network will be
instantaneously replaced by a job entering the network. This assumption may be valid
for topologies that are experiencing very high incoming workload and so are almost at
saturation. However, whilst this is a desirable state for a topology to be in from an



70 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

efficiency point of view (as it indicates that the topology is correctly configured for the
input workload) it is very rarely the case in practice. As with the Jackson network
approach discussed above, the limited number of scenarios that it applies to means that
MVA is not a good fit for providing a generalised performance modelling approach for
Storm topologies.

Individual queues

Given that treating a topology as a single queueing network, open or closed, seems infeasible
the next option was to look at a topology as a collection of individual queueing systems.
These queueing systems are connected in a network and tuples pass along paths in this
network, experiencing delays at each node. Each path will have a total end-to-end latency
value and the various paths in the topology can be analysed to produce summary statistics
on the performance of that topology as a whole. However, to facilitate this kind of analysis
and incorporate all the main sources of latency a tuple would encounter, a new way of
representing the topologies was required.

4.1.2 Tuple flow plan

Section 2.8 describes the various elements tuples encounter when passing through the
executors and worker processes assigned to a topology. From the descriptions in that
section, it is clear that the actual tuple flow is more complicated than that depicted by
the topology’s logical plan (see section 2.6.3). To discern all the elements a tuple will
encounter, a more comprehensive representation of a topology is required, one which takes
into account the worker processes and network transfers as well as the executors.

Figure 4.1: An example logical and physical path through the topology shown in figure 2.3.

Using the topology logical plan shown in figure 2.3 as an example, figure 4.1 shows a
particular path a tuple could take through the logical plan (we call this a logical path) from
S1−4 → A7−8 → B11−11 → Acker3. This logical path includes both the delay at the ERQs,



4.1. PERFORMANCE MODELLING PROCEDURE 71

service delay in the ULT and the delay through the executor send queue (ESQ). However,
it does not include the delay encountered whilst passing through the worker processes
or across the network. If we include these elements we get a path like the second one
displayed in figure 4.1. This physical path includes the worker process send thread (WPST)
(including the worker process transfer queue (WPTQ)) and the worker process network
receiving logic which includes the de-serialisation and sorting functions which route tuple
lists to the relevant ERQs (see section 2.8.2). The connections in a physical path are colour
coded to show the type of network transfer they represent: green for local connections
within worker processes; yellow for inter-local connections between worker processes on the
same worker node; and red for remote connections between worker processes on separate
worker nodes.

Figure 4.2: The tuple flow plan for the simple linear topology shown in figure 2.3.

If we apply the physical path approach to all paths in the topology logical plan, we obtain
a new topology representation called the tuple flow plan. Figure 4.2 shows an example of
the tuple flow plan for the topology shown in figure 2.3. The topology logical plan allows
us to discern the paths tuples will follow between executors and the tuple flow plan allows
us to identify what physical elements the tuples on those logical paths will encounter.

4.1.3 Elements to be modelled

Using the tuple flow plan we can identify the elements encountered by tuples along each
path in the topology. In order to calculate the expected end-to-end latency for those



72 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

paths and the topology as a whole, we need to predict the expected latency for each of
the encountered elements, namely the executors, the worker processes and the network
transfers.

Executors The delay due to the executor’s ULT, which includes the ERQ and tuple
processing in the tasks, is covered in section 4.2. The delay due to the executor send
thread (EST) is discussed in section 4.13.2.

Worker processes The worker process delay is due to tuple processing in the WPST
which consists of the WPTQ and associated operations. The modelling of this delay
is discussed in section 4.13.3.

Network transfer times New arrangements of operators on the cluster will affect the
expected transfer times of tuples between elements. Introducing more remote network
connections will affect the end-to-end latency. The approach to modelling this aspect
is detailed in section 4.11.

In addition to the elements above, the parameters listed below will need to be predicted
for proposed physical plans:

Arrival rates The expected tuple arrival rate, at the executors and worker processes
of a proposed physical plan, depends on many factors. These include the routing
probabilities of outputs sent to downstream destinations in the tuple flow (connections
between logically connected elements of the topology) (analysed in section 4.4) and
the input to output coefficients of each topology element (studied in section 4.6).
The overall approach to predicting the arrival rates of each topology element for a
given incoming workload is detailed in section 4.8.

Incoming workload The expected incoming workload into the topology (the expected
emission rate from the spouts) is a key variable in the prediction of a proposed
physical plan’s performance. The incoming workload is also the initial state for the
arrival rate calculations detailed in section 4.8 and discussion of the prediction of
this parameter is given in section 4.3.

Service times The expected service times for the executors in the proposed physical plan
can be affected by changes in the number and type of executors that are co-located on
each of the topology’s worker processes. The approach to predicting this parameter
is given in section 4.9.

Input tuple list size This is the number of tuples that are expected in each of the
input lists that arrive at the ERQ (see section 2.8). This value is important for the
prediction of the executor latency detailed in section 4.2. The estimation of the
input tuple list size is discussed in section 4.12.



4.2. EXECUTOR LATENCY MODELLING 73

Once estimates of the delay due to the elements of the tuple flow plan have been found
for a given proposed physical plan, it is then possible to look at modelling end-to-end
latency of each path through topology tuple flow plan. The approach for this is detailed
in section 4.13.

4.2 Executor Latency Modelling

The complexity of the Disruptor queue (described in section 2.7) means that simple
queueing models, such as the M/M/1, are unlikely to be appropriate for the executors.
This theory is supported by the low accuracy reported by studies using these models,
discussed in section 3.2.1. The primary challenges in modelling the expected latency at
the executors are:

Service times The multi-threaded nature of the executors means that tuple service can
be paused arbitrarily by the Java Virtual Machine (JVM) or operating system (OS),
and that these pauses are likely to get longer the higher the number of executors
that are co-located in a worker process. This means that exponentially distributed
service time cannot be relied upon. Further discussion of these issues is given in
section 4.9.

Batch arrivals and internal transfers Recall that section 2.8 had show how tuples
arrive into the ERQs and WPTQs in batches. Storm does not provide details
of the sizes of these batches, nor does it provide arrival rate information on the
batches, but only provides details of the tuples placed onto the Disruptor queue Ring
Buffer. These issues mean that batch arrival queueing models, even with general
service distributions, are not strictly applicable without modifying Storm to report
these metrics or inferring the size of these batches. These issues are addressed in
section 4.12.

Bulk fetch and sequential service Tuples are taken off the Disruptor queue Ring
Buffer in batches (see internal buffer in section 2.8.1). This implies the use of a
general bulk service queuing model, many of which exist in the literature (Sasikala &
Indhira, 2016). However, whilst the tuples are taken off the queue in bulk they are
served sequentially. This forms another queue within the system and this situation
is not covered by the bulk service queuing models in the literature.

Timed queue flush The Disruptor queue will move input batches into the overflow
queue when either the batch size limit k is reached or the flush interval δ (typically
1 ms) completes. This combination of two distinct clearance mechanisms is intended
to prevent low arrival rates causing tuples to wait in the input batch for extended
periods. However, it also means that none of the standard queueing models will



74 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

accurately cover the Disruptor queue behaviour. This is because batch arrival and
bulk service models are based on fixed size limits for the batches and the flush
interval means that batch sizes are potentially highly variable.

Also, due to the timed queue flushing, there is now a minimum queue waiting time
(l) for all queues whenever the arrival rate (λ) is less than k arrivals within δ time(
λ ≤ k

δ

)
. This input batch waiting time will be reduced with higher arrival rates,

although waiting time in the overflow queue may increase with higher arrivals, but
none of the standard queueing models will account for this behaviour. Therefore, an
alternative approach is required to accurately model the executors.

4.2.1 Queue simulation

For the reasons outlined above, a classic queueing model is unlikely to provide accurate
predictions of the performance of the Disruptor queue and executor ULT combination.
When systems become too complex to model and derive closed form analytical approaches,
an option is to simulate the system in order to gauge its likely performance (Gross et al.,
2008).

The simulation of queueing systems can take advantage of the fact that the state of
these systems is discrete. It only changes by a set amount according to which of several
predefined events (job arrival, service completion, etc.) occur. This situation lends itself
to a discrete-event simulation (DES) approach.

Discrete-event simulation

A DES models the operation of a system as a discrete sequence of events in time. Each
event occurs at a particular instant in time and marks a change of state in the system.
There are three typical approaches in DES:

Activity oriented Activity oriented DES divides time into discrete steps and advances
through a set time range, altering the state as the time of given events is reached.
This form of simulation is very slow as the simulation has to pass through all time
steps even if nothing is changing in the system.

Event orientated Event oriented DES uses the assumption that the system’s state
doesn’t change between events and therefore these inter-event periods do not need
to be simulated as in the activity oriented case. The simulation maintains a set of
pending events and will find the next event in the set, advancing the simulation time
to match that event. The simulation has logic for adding events to the set and for
how each event type changes the system’s state.

Process orientated Similar to the event oriented DES, process oriented DES only deals



4.3. INCOMING WORKLOAD 75

with events and not the time between them. However, event oriented DES performs
all its operations in a single serial process or thread which may contain logic for
several distinct entities. Process oriented DES, in comparison, uses separate processes
(threads) for each entity in the simulated system. These separate processes generate
and consume events from the pending events set and pass events between each other.
The advantage of this approach is that it can be more modular in nature, as the logic
for each entity is self-contained, which can ease understandability of the simulator
and re-usability of its various elements. However, it does introduce concurrency and
its associated complexities into the logic of the simulator implementation.

Although process oriented DES can yield more modular, easily reusable code, creating
these types of simulators can be complicated. Therefore, in order to model the response
time of an executor, an event orientated DES approach was adopted.

4.2.2 Executor simulator

Section 2.8.1 outlines the various elements of an executor that a tuple will pass through.
These can be split into two sections:

• User logic thread (ULT): which contains the ERQ and the tasks containing the user
defined tuple processing code.

• Executor send thread (EST): which contains the ESQ and the code which sorts the
outbound tuples into the local dispatch list and the remote dispatch map.

We focused our simulation design on the ULT elements of the executor. The ULT is
likely to contribute the majority of the executor’s response time, also there are several
metrics which Storm does not provide for the EST which are vital for accurate simulation.
Discussion of how the delay, due to the EST operations, is accounted for is given in
section 4.13.2. A detailed discussion of the executor ULT simulator implementation is
given in appendix B.

4.3 Incoming Workload

As described in section 1.3.3, one of the key advantages that a performance modelling
system brings to DSPSs is the ability to assess the effect of future workload on the
performance of a currently running topology.

In the case of Apache Storm, the incoming workload into the topology is the expected
output from each of the spout executors. Predicting this is highly dependent on the
topology’s application. For example, a topology that is processing tweets will see strong
seasonality in the input rates as a results of users sending more messages in the mornings
and evenings. Conversely, a topology that is taking input from other machines, such as



76 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

parsing server logs or data from a sensor network, may have a steady or highly bursty
input profile (Calzarossa et al., 2016).

The performance modelling system detailed in this thesis is designed to accept values
for the expected emission rate from each spout in the proposed topology physical plan.
Naively, this could be based on the average output of all spouts from the running topology
over a given period or it could be a prediction from a more sophisticated method, many of
which have been assessed for auto-scaling and autonomous system management (Huifang
Feng & Yantai Shu, 2005; Herbst et al., 2017). There are many off-the-shelf packages
available for time series predictions that could be used with historical emit count data
from the topology’s spouts to predict future workload. For example, Facebook’s open
source Prophet1 software is able to perform predictions using a generalised additive model
approach to take account of both trends and seasonality in time series data (Taylor &
Letham, 2018). More detail of the application of packages such as this, to DSPS workload
prediction, are discussed in chapter D.

Whilst the prediction of future workload for an existing topology may be possible via an
off-the-shelf method, this would not take into account the effect of changing the parallelism
of the spout components themselves. Predicting how a change in the number of spout
executors would affect their emission rate would require developing a model of the upstream
infrastructure that supplies data to the spouts. This could be highly specific to each
application and so it was decided to leave this aspect to future research, see section 6.3.2.
For the time being, the performance modelling system has been designed to accept a
workload prediction so that a future prediction system could be incorporated easily.

When it comes to validating the end-to-end latency prediction of the performance modelling
system, the metrics from a topology running with a source physical plan are used to
predict the end-to-end latency of the same topology with a proposed physical plan. The
validation process, described in chapter 5, records metrics for the topology running under
both the source and proposed physical plans, before running the prediction system. In
this way the true performance of the proposed physical plan is known. This allows the
true incoming workload of the proposed physical plan to be supplied to the modelling
system as a workload “prediction” along with the source physical plan metrics. Essentially
this represents a perfect workload prediction.

4.4 Routing Probabilities

In order to calculate the tuple arrival rates into the executors of a proposed tuple flow plan,
we need to know how the tuples will be routed along the various logical connections between

1see: https://facebook.github.io/prophet/

https://facebook.github.io/prophet/


4.4. ROUTING PROBABILITIES 77

executors in the proposed logical plan. The proportion of tuples that will be routed along
each logical connection is dictated by the routing probability of that connection. This
describes how likely a tuple leaving an executor is to pass along a given connection. There
are two forms of routing probability used in the performance modelling calculations: the
stream routing probability (SRP) which is defined in section 4.4.1 and the global routing
probability (GRP) defined in section 4.4.2.

4.4.1 Stream routing probability

When designing a Storm topology the user will create the query plan (see section 2.6.1).
This dictates which components are connected and what type of connections (shuffle,
fields grouped, etc. — see section 2.5) they are. Each connection (referred to as a stream
in Storm) between components in the query plan can be given a unique name. This
allows multiple outgoing connections to be defined for a given component, which facilitates
“splitting” incoming streams and dividing output into distinct streams for downstream
components to subscribe to. It is also possible to define multiple streams between two
components.

The SRP RS
i,j is the likelihood that a tuple emitted from a source executor i onto stream

S will be sent to a downstream destination executor j. Where 0 ≤ RS
i,j ≤ 1 and for each

output stream S from the source executor i to the set Ji of all destination executors j
downstream of i:

∑
j∈Ji

RS
i,j = 1

The prediction of the expected SRPs for logical connections between executors in a
proposed logical plan is dependent on the stream grouping (see section 2.5) of those
connections:

Shuffle grouping

Shuffle grouped logical connections (see section 2.5) are load balanced, meaning that tuples
are routed down each downstream connection with equal probability. Using the topology
query plan shown in figure 4.3 as an example, Stream-1 between components S and
A has a shuffle grouping. Tuples traveling from any of the executors of component S,
along Stream-1, will have an equal probability of being routed to any of the executors
of component A. In the case of the logical plan shown in figure 4.3, the two logical
connections from executor S1−2 (S1−2 → A5−6 and S1−2 → A7−8) will both have an SRP
of 0.5, as will the two outgoing connections from the other two executors of component S.



78 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Figure 4.3: Example topology featuring a component with multiple output streams.



4.4. ROUTING PROBABILITIES 79

Fields grouping

The SRP of fields grouped connections (see section 2.5) are dependent on the partitioning
function used to assign tuples to downstream tasks (see section 2.4.2) and the distribution
of field (key) values within the tuple stream.

For the lifetime of a topology, a given field value (or combination of field values) will
always2 result in the same task ID being returned by the fields grouping hash function.
However, that task may be assigned to a new executor during a topology rebalance (see
section 2.11). If a proposed physical plan changes the task distribution within the source
and/or destination executors of a given fields grouped logical connection, then this will
effect the SRP of that connection. This is why it is important to track the proportion
of tuples sent from a source task to a destination task (on a per stream basis) whilst the
topology is running. To do this we define a task level SRP called the task to task routing
probability (TRP) (RS

t,u), which is defined as the proportion of tuples leaving task t on
stream S which will be routed to task u. Where 0 ≤ RS

t,u ≤ 1 and for each output stream
S from the source task t to the set Ut of all destination tasks downstream of t:

∑
u∈Ut

RS
t,u = 1

In order to calculate the TRPs, the per stream task to task transfer counts σSt,u are required.
The TRP from task t to task u is then given by dividing the transfer count from t to u on
stream S by the total output count of task t onto stream S (σSt ):

RS
t,u =

σSt,u
σSt

(4.2)

The task to task transfer counts that are required to calculate the TRPs are not tracked by
default in Storm. The metrics system will record, for each downstream task, the number
of tuples it receives. However, it will only log the incoming stream name and source
component for those tuples. The reason for this is to reduce the memory overhead of the
metrics system. Using the current Storm approach, each task instance only needs to store
counts equal to the number of upstream components times the number of streams between
those upstream components and the one that task instance is part of. For example, in
figure 4.3, task 13 (part of component C) will contain one count for tuples arriving from
component B on Stream-3.

If upstream task identifiers were added to this it would increase the key space by a
factor proportional to the number of upstream tasks. For task 13, in figure 4.3, recording

2Unless a custom fields grouping is used.



80 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

transfers at the task level would mean it would go from storing one transfer count to
four (component B task 9 Stream-3, component B task 10 Stream-3, etc.). However, if
the upstream component had hundreds of tasks, recording metrics at the task level could
conceivably increase the memory footprint of the stored count metrics by several orders of
magnitude.

Despite the memory implications, the task to task transfer count information is vital to
the routing probability predictions, described in section 4.5.1. It would be possible to alter
the Storm metrics system to record this information. Even with an order of magnitude
increase in the stored metrics values, only integers are being stored and so the actual effect
on the memory footprint of the worker process is unlikely to be significant for all but the
most large scale topologies. However, instead of altering Storm itself our modelling system
provides a custom metric, as part of the metrics gathering system described in section C.2,
that can be added to a topology to be able to track the task to task transfer counts.

4.4.2 Global routing probabilities

The GRP (Gi,j) describes the probability that a tuple leaving executor i will be routed to
executor j, from the set Ji of all executors downstream of i, regardless of the stream that
the tuple is emitted on.

0 ≤ Gi,j ≤ 1

∑
j∈Ji

Gi,j = 1

Figure 4.4: Example of the SRP and GRP values for an executor from the topology shown
in figure 4.3.

Using the topology shown in figure 4.3 as an example, component B has two outgoing
streams (Stream-3 and Stream-4). As there is only one executor for component D the SRP



4.5. PREDICTING ROUTING PROBABILITIES 81

of logical connections from the executors of component B onto Stream-4 will be 1.0. Stream-
3 is fields grouped and so the SRP for logical connections from the executors of component
B on Stream-3 will depend on the key distribution in the tuple stream. For example,
logical connection B9−10 → C13−14 could have an SRP of 0.8 whilst B9−10 → C15−16 would
have an SRP 0.2.

The GRP for the logical connections is dependent on the relative proportion of the total
tuple output sent down each stream. The stream output proportion (SOP) (OS

i ) describes
what proportion of the total output of executor i is emitted to output stream S. For
example, if 80% of tuples from executor B9−10 are issued onto Stream-3 (OStream-3

B9−10 = 0.8)
this 80% would be shared according to the SRP of each logical connection leaving B9−10.
Figure 4.4 illustrates the SRP and GRP of each outgoing logical connection for executor
B9−10 from the logical plan shown in figure 4.3.

4.5 Predicting Routing Probabilities

4.5.1 Predicting stream routing probabilities

When a new physical plan is proposed, the expected SRPs for all the logical connections
between executors in the resulting logical plan need to be estimated.

Shuffle grouping

For any shuffle grouped streams, it is assumed that the tuples submitted to that stream
will be shared equally between all the destination executors of each component subscribed
to that stream. Therefore, the SRPs for the proposed connections between a source
executor i and each of its downstream destination executors (j) from the set of all possible
downstream executors Ji, on shuffle grouped stream S, is defined as:

RS
i,j = 1

|Ji|
(4.3)

Fields grouping

Predicting the SRPs for the logical connections of fields grouped streams is a more
complicated process than for shuffle grouped connections. It is likely that this complexity
is the reason why the vast majority of the previous studies detailed in chapter 3 ignored
topologies with these types of connections.

There are two distinct situations that occur for fields grouped connections: the case
where the incoming streams into the source component of a fields grouped connection



82 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

are exclusively shuffle grouped; and the case where at least one incoming stream is fields
grouped. The reason it is important to differentiate between these cases is because of
how they affect the assumptions regarding tuple routing to the tasks of the downstream
executors.

As described in section 2.4.2, the tasks act to partition the state space and facilitate tuple
routing. The number of tasks assigned to each component is set for the lifetime of the
topology and so will be shared evenly between the number of executors assigned to each
component in the topology configuration. For fields grouped streams, a number of tuple
fields (keys) are used to route tuples with the same fields values to the same downstream
task.

Figure 4.5: Example path from the topology shown in figure 4.3 showing the two distinct
fields grouping cases: shuffle only input and fields grouping input.

Figure 4.5 shows one of the two paths through the query plan of the example topology
shown in figure 4.3. This particular path (S → A→ B → C) illustrates both the cases
mentioned above with the fields grouped Stream-2 having only shuffle grouped connections
into its source and the fields grouped Stream-3 having a fields grouped connections into
its source. The numbered circles, in figure 4.5, represent the individual tasks within the
executors. The red dotted lines indicate the logical connections and the black indicate
the task to task connections. In figure 4.5, the topology configuration sets the number of
executors for each component to one and therefore all the tasks for each component are
allocated to the single executor for that component.

Figure 4.6 shows the same query path as figure 4.5 after a rebalance, where each component



4.5. PREDICTING ROUTING PROBABILITIES 83

Figure 4.6: Example topology shown in figure 4.5 but with a new topology configuration
where each component now has two executors instead of one.



84 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

now has double the number of executors. This shows the tasks for each component
reassigned to the new executors and the resulting changes in the logical connections and
their SRPs.

Both figures show that only one task in executors S1−4 and A5−6 is connected. This is
because the stream connecting these components is shuffle grouped. In this case there is
no state to partition as the routing is random and therefore Storm only ever activates one
task in the source executors (typically the task with the lowest numbered task identifier).

Source component with shuffle grouped input streams If the source component
of a fields grouped stream has only shuffle grouped inbound streams, such as component
A in figures 4.5, 4.6, then executors of that source component will all receive a balanced
share of the tuples from the upstream executors. This implies, assuming that the shuffling
algorithm is sufficiently random, that all executors will receive approximately the same
distribution of tuples with given field (key) values. For example, if we assume that the
tuples leaving spout S have an animal field and that 10% of them have the value “aardvark”,
then we would expect both executors of component A in figure 4.6 to see 10% of tuples
arriving with “aardvark” as the value of their animal field.

As all executors receive the same distribution of field values and the hashing function that
maps from field value to task ID is the same for all executors, the pattern of TRPs to
all downstream tasks will be the same for all source executors which only receive shuffle
grouped streams. This can be seen in figure 4.6, where the TRPs and the logical connection
SRP (executor to executor) from the two executors of component A to the executors of
component B are the same.

This simplifies the prediction of the SRPs for the logical connections in this case. Take for
example the case where we wish to predict the SRPs between the executors of components
A and B in figure 4.6 (proposed plan) using data from the topology as configured in
figure 4.5 (source plan). To do this we perform the following steps:

1. Calculate the TRPs, for each output stream, using metrics from the source plan.

2. When you have shuffle only input streams, only one task is active in each executor.
Therefore, the TRPs to all downstream tasks in the fields grouped stream will be
the same for all executors of the source component. This results in a component
to task routing probability (only applicable in this specific case). For our example,
using the topology configuration shown in figure 4.5, this would result in the values
shown in table 4.1.

3. For each of the downstream destination executors in the proposed plan, sum the
component to task routing probabilities (shown in table 4.1) for all the tasks in
each proposed destination executor, for each output stream. This value is now the



4.5. PREDICTING ROUTING PROBABILITIES 85

estimated SRP of the logical connections from each executor of the source component
to each proposed downstream executor. Table 4.2 shows these calculations for our
example connections.

Table 4.1: Measured routing probabilities for connections from executors of component A
to downstream tasks of component B on Stream-2.

Connection Component to task RP

A→ B9 0.60
A→ B10 0.20
A→ B11 0.15
A→ B12 0.05

Table 4.2: Predicted SRPs for all executors of component A to the proposed downstream
executors of component B on Stream-2.

Connection Predicted SRP

A→ B9−10 0.60 + 0.20 = 0.8
A→ B11−12 0.15 + 0.05 = 0.2

Source component with at least one incoming fields grouped stream The sec-
ond case, and the more complex of the two, is where the source component for a fields
grouped stream has one or more incoming streams that are themselves fields grouped.
Referring to the example topology shown in figure 4.5, component B which emits onto
Stream-3 is an example of this situation.

If a source component receives a fields grouped stream then the executors of that source
component cannot be assumed to receive the same distribution of field values as each
other. Looking at the topology in figure 4.5, if tuples on Stream-2 contain a colour field
and 10% of those tuples have a colour value of “purple”, then all of those tuples will be
routed to one of the executors (and specifically one of the tasks) of component B. As only
one task receives “purple” tuples and the others do not, its internal logic may results in
tuples with different field values (compared to other tasks) being issued onto the fields
grouped Stream-3. As a result of this, each individual task instance (in component B) may
have different routing probabilities to all downstream tasks of component C. Therefore,
combining tasks in new executors arrangements, for a proposed physical plan, will result
in completely different SRPs for the logical connections between the executors. This is in
contrast to the case described in the section above, where each source executor had the
same predicted SRPs to the set of downstream executors.



86 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

The variation in TRPs means there is no uniform component to task routing probability
that can be applied across the proposed executors. Instead, the combination of TRPs for
the tasks in each set of proposed source and destination executors needs to be used to
predict the SRP of the logical connection between them. For example, for the proposed
logical connection between executors B9−10 and C13−14, shown in figure 4.6, we would need
the TRPs (measured from the source plan shown in figure 4.5) for tasks B9 → (C13, C14)
and B10 → (C13, C14). However, it is not simply a case of taking the average TRP for the
proposed logical connection.

For components which receive fields grouped streams, such as B in figure 4.5, each task of
that component receives a different level of input depending on the distribution of field
values incoming into the executors of the upstream component (e.g. A). Therefore, it is
fair to assume that the level of output from each of these tasks onto the outgoing fields
grouped stream (e.g. Stream-3) will also vary. This means that the relative output of
each task, on to a given output stream, should be taken into account when predicting the
resulting SRP of the logical connections of that stream. If we did not take the relative
output of each task into account, then we could have a situation where a task that almost
never emits tuples, but has a TRP of 0.99 to a given destination task, could heavily weight
the resulting SRPs of the source executor towards the executor containing that destination
task. In which case this would ignore the contribution of other heavily emitting tasks,
with lower TRPs, which emit to tasks on other executors.

In order to weight the contribution of the TRP of each task to the predicted SRP, we
calculate the measured task output proportion (MTOP) (ζSt ). This value represents the
proportion of the total output (σSc ) of a given source component c, onto a given output
stream S, that task t emits:

ζSt = σSt
σSc

(4.4)

Where σSt is the measured total emission onto stream S of task t in the source component
of the fields grouped stream. The MTOP is calculated separately for every output stream
of the source component. This is important as a given field value in an input tuple could
mean many tuples being emitted onto one output stream but significantly fewer onto
another, affecting the TRPs. The source plan, shown on the left hand side of figure 4.7,
gives an example of the MTOP values for the tasks of component B, where task 9 emits
70% of all the tuples emitted by the executors of component B onto Stream-3.

Once the MTOP is calculated for the tasks of a source component (for a fields grouped
stream), using data from the source plan, the executor task arrangement for the proposed



4.5. PREDICTING ROUTING PROBABILITIES 87

Figure 4.7: The ETOP values for two proposed plans (centre and right) using MTOP
values from a single source plan (left).

plan is used to calculate the estimated task output proportion (ETOP) for the tasks in
each proposed executor. The ETOP is the expected proportion of the total output (on
a given output stream) from the executor that each task will emit. ETOP values (ξi,St )
for each of the tasks t in proposed executor i, emitting on to stream S, are calculated
by taking the MTOP value (ζSt ) of each task t and dividing it by the sum of the MTOP
values over the set Ei of all tasks in the proposed executor i.

ξi,St = ζSt∑
u∈Ei

ζSu
(4.5)

An illustration of these values in two different proposed topology configurations, using data
from a single source plan, is shown in figure 4.7. Once the ETOP has been calculated for
each task in a proposed source executor, we use these values as weights to the respective
TRPs.

To calculate the SRP (RS
i,j), we take the set of tasks Ei in the source executor i and the

set of tasks Fj in the destination executors j and calculate a weighted average of the TRPs
between the two:

RS
i,j =

∑
t∈Ei

ξi,St

∑
u∈Fj

RS
t,u

 (4.6)



88 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

By way of an example, the stages of the process described above are carried out below for
predicting the SRPs of the logical connections of Stream-3 in the topology configuration
shown in figure 4.6 (proposed plan) using the data from the topology configuration shown
in figure 4.5 (source plan):

1. Calculate the TRPs (equation 4.2) using measured data from the source plan. These
are shown in table 4.3.

2. Calculate the MTOP (equation 4.4) for the tasks in the source plan. These will be
as shown in the source plan section (left most) of figure 4.7.

3. Using the proposed executor task arrangement, from the proposed physical plan,
calculate the ETOP (equation 4.5) for the tasks in the proposed executors. These
will be as shown in Proposed Plan 1 (center) in figure 4.7.

4. Weight the TRP of each task in the proposed (logical connection) source executors
by their respective ETOP values. Then sum these weighted TRPs for tasks in the
proposed source and destination executors in order to predict the SRP (equation 4.6)
for the proposed logical connection between those executors. These calculated values
are shown in table 4.4.

Table 4.3: TRPs for the tasks of component B to the downstream tasks of component C
on Stream-3.

Task C13 C14 C15 C16

B9 0.60 0.15 0.05 0.20
B10 0.25 0.05 0.40 0.30
B11 0.15 0.65 0.05 0.15
B12 0.05 0.35 0.20 0.40

Table 4.4: Predicted SRPs for the logical connections between executors of component B
to the downstream executors of component C on Stream-3.

Logical Connection Predicted SRP

B9−10 → C13−14 0.875(0.60 + 0.15) + 0.125(0.25 + 0.05) = 0.69
B9−10 → C15−16 0.875(0.05 + 0.20) + 0.125(0.40 + 0.30) = 0.31
B11−12 → C13−14 0.75(0.15 + 0.65) + 0.25(0.05 + 0.35) = 0.70
B11−12 → C15−16 0.75(0.05 + 0.15) + 0.25(0.20 + 0.40) = 0.30



4.6. INPUT TO OUTPUT RATIOS 89

Field value distribution In the methods described above it is important to note that
we assume that the distribution of field values within the tuple stream will be the same
for the proposed plan as it was for the source plan. This is not an unreasonable working
assumption, however if the field value distribution is time varying or dependent on some
other external factors, then the predictions of the proposed plan SRPs will be affected.

To counter this a system could be developed to predict field value distribution changes over
time and use this to predict a routing probability distribution for each connection. Such
a system would, however, be quite intrusive and would require sampling the field value
distribution for each fields grouped connection (if not all connections) in the topology.
This could introduce significant processing overhead but may be worth the effort if higher
accuracy is required. See section 6.3.3 for further discussion of this issue.

4.5.2 Predicting global routing probabilities

To calculate the GRPs we weight each logical connection’s SRP by the proportion that
connection’s stream contributes to the total output of each source executor.

This process is reasonably straightforward once you have predicted the SRP (RS
i,j) for each

logical connection between source executor i and destination executor j on stream S. You
then need to calculate the SOP (OS

i ) (discussed in section 4.4.2) for each output stream
(S) from source executor i, which is simply the fraction of the total tuple output each
stream contributes. The GRP between executors i and j is then calculated by multiplying
the SRP of the logical connection between i and j by the corresponding SOP for that
connection’s stream:

Gj
i = RS

i,jO
S
i (4.7)

4.6 Input to Output Ratios

Another property that affects the flow of tuples through a topology is the input to output
(I/O) ratio (φ) of the executors in the logical plan.

For simple components which have a single input and output stream, such as those shown
in figure 4.5, the calculation of φ is a straightforward ratio of the arrival rate λ and the
output rate σ.

φ = σ

λ



90 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

The user defined code within a component may generate multiple output tuples for each
input tuple, for example splitting a sentence into individual words. In this case φ > 1.
Conversely, a component may aggregate incoming tuples, only producing an output once
a sufficient number have arrived, such as producing an average of the last ten temperature
measurements. This leads to φ < 1.

The expected output rate from a given executor i onto output stream Sout is then given
by:

σSout
i = φSout

i λSin
i (4.8)

Figure 4.8: An example topology query plan showing component (D) with multiple input
and output streams.

However, it is possible for components to have multiple input and output streams. Com-
ponent D in the query plan shown in figure 4.8 is an example of such a situation. In this
case the relationship between the output and input rates on each stream is potentially
more complicated. To capture this more complex behaviour we treat φ not as a scalar, as
in equation 4.8, but as a vector of I/O coefficients (βS), one for each arrival rate λS of
each input stream:

σSout
i =



β1
i

β2
i
...
βSi

 •


λ1
i

λ2
i
...
λSi

 (4.9)

As an example, taking an executor i of component D in figure 4.8, with example values



4.7. PREDICTING INPUT TO OUTPUT RATIOS 91

φ = [1, 2, 3] and λ = [12, 24, 35], the output rate σS4
i on stream S4 can be calculated as

below:

σS4
i =


1
2
3

 •


12
26
35

 = 169

4.6.1 Calculating input to output coefficients for source physical
plans

We calculate the vector of I/O coefficients (φ), for each output stream of each task in a
running source topology, by using a linear regression approach. We calculate φ at the task
level, instead of the executor level, as this is needed for the prediction process described in
section 4.7.

First, a time series is created from the metrics of the running source topology. This
consists of output stream tuple output rates (σSt ) and input stream tuple arrival rates
(λSt ) for each task t windowed into equal length time buckets. This forms a set of linear
equations which are then solved using a least squares approach3 to the resulting linear
matrix equation.

This approach works well for simple topologies where the relationship between inputs and
outputs is relatively straightforward.

4.7 Predicting Input to Output Ratios

In a proposed physical plan, changes in the parallelism of the components can lead to new
task assignments within the executors of the resulting logical plan. As in the discussion of
predicting routing probabilities (see section 4.5), the overall I/O behaviour of an executor
is a function of the I/O behaviour of the tasks it contains. It is possible that the user
defined code in the tasks may produce different output rates when receiving different
combinations of arrival rates on the component’s input streams. Therefore, the stream
grouping of the input streams into a component affects how the I/O behaviour of each
task contributes to the behaviour of a proposed executor as a whole.

4.7.1 Input streams containing only shuffle groupings

For a component which has only shuffle grouped incoming streams, the prediction of the
I/O coefficients for the proposed executors of that component is relatively straightforward.

3Currently this uses the linear algebra least squares method of the numpy Python library.



92 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

The shuffle grouping of the incoming streams means that all proposed executors of the
component will receive the same field value distributions as each other. Therefore, it is
reasonable to take an average of the measured I/O coefficients across all tasks in the
component from the source physical plan, and apply this averaged I/O coefficient vector
to the proposed executors.

For example, assume that component D in figure 4.8 has only shuffle grouped inputs
(streams S1, S2 and S3) and that in the source physical plan it has a parallelism of two.
Now assume that a proposed physical plan increases the parallelism to three. We calculate
the I/O coefficient for each task in the two executors of the source physical plan and then
sum the βS of each input stream and divide by two. This gives an average I/O ratio vector
which would be used for each of the three proposed executors.

4.7.2 Input streams containing at least one fields grouping

For cases where a component has at least one incoming stream which is fields grouped, we
can no longer assume that all executors of a given component will share the same I/O
behaviour. It may be that tasks have logic that will emit different output rates if they
receive certain fields values. This means that we need to combine the I/O behaviour of
the tasks in the proposed executor.

As with the routing probability calculations for these types of components (see section 4.5.1),
the I/O coefficients need to be weighted by the proportion of activity each task will be
responsible for within the proposed executor.

To do this we make use of a similar approach to that used for weighting the TRPs. Those
calculations used the ETOP, which is based on the output of each task, to weight the
contribution of each task to the overall SRP of the proposed executor. However, in the case
of the I/O ratios, the contributions of tasks to the I/O behaviour of their host executor is
proportional to the relative level of arrivals they receive.

This focus on arrivals means that a new measure of task activity is needed. The measured
task input proportion (MTIP) (κSt ) is similar to the MTOP defined in equation 4.4.
However, instead of the emission rate (σSt ) of task t onto output stream S, the MTIP uses
the task arrival rate λSt on input stream S and the total arrival rate λSc into component C:

κSt = λSt
λSc

(4.10)

The MTIP is calculated for every input stream into every task of each component in the
source physical plan. We then calculate the estimated task input proportion (ETIP) (ηi,St )



4.8. ARRIVAL RATES 93

of each input stream S into task t in the proposed executors i of the proposed physical plan.
This is similar to the ETOP value calculated in equation 4.5 in section 4.5.1. However, it
is based on the MTIP value (κSt ) of each input stream S and task t divided by the sum of
the MTIP values for input stream S over all tasks in the set Ei in the proposed executor i.

ηi,St = κSt∑
u∈Ei

κSu
(4.11)

Once we have an ETIP value for each input stream into each task, in each proposed
executor, we multiply it by the I/O coefficient βSt for the corresponding task and stream.
We then sum these values for each stream, over all Ei tasks in the proposed executor i, to
gain a set of estimated I/O coefficients for the executor.

βSi =
∑
t∈Ei

ηi,St βSt

4.8 Arrival Rates

4.8.1 Predicting executor arrival rates

In order to predict the arrival rate at each executor of a proposed physical plan, the flow
of tuples through that plan needs to be calculated. Once we have predicted values for the
SRPs and I/O coefficients of each proposed executor, we can make a prediction of the
emission rate from the topology’s spouts and propagate this through the proposed plan.

Starting with the set of all spout executors, we perform a breadth-first traversal through
the logical connections of the proposed tuple flow plan, taking the emission rate from each
spout executor on each output stream and propagating this to each downstream executor
using the routing probabilities to calculate the portion of the emission rate assigned to
each connection.

Once all executors downstream of the spouts are processed, we will have the arrival rate
at each of those executors. At this point we calculate the emission rate on each output
stream of the downstream executors using the predicted I/O coefficients. These steps are
then repeated for the next set of downstream executors (in the breadth-first traversal)
until all arrival rates for the executors in the tuple flow plan have been calculated.

The above calculation will result in a per input stream (S) arrival rate (λSj ) at each
proposed destination executor j. A check must be performed at this point to ensure that
the combined arrival rate of all input streams at each proposed executor does not exceed
the service rate of that executor (see section 4.9). If it does, then this proposed plan



94 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

should be rejected and the executors where the overload occurs highlighted.

4.8.2 Predicting worker process arrival rates

Once the executor arrival rates have been predicted, the proposed tuple flow plan (see
section 4.1.2) is used to predict the combined arrival rate at the WPTQs. The arrival
rate is found by combining the rates from all logical connections that pass through a
worker process, namely those marked as inter-local or remote. These values are used with
the input batch size estimation methods for the worker processes which are detailed in
section 4.12.2.

4.9 Service Times

As described in section 2.13.2, Storm provides two different measures of the time taken to
process a tuple within a bolt task: process latency (see section 2.13.2) and execute latency
(see section 2.13.2). The difference between the two is that the process latency ends when
a bolt acknowledges the received tuple (after it has finished processing it) and the execute
latency ends when all code (including any code that runs after the tuple has been emitted)
in the bolt’s execute method has completed.

In practice, for most topologies the difference between the execute and process latency
will be minimal (most bolts will not place code after the emission/acknowledgement call)
(Allen et al., 2015). However, it is possible that there could be code after a tuple is emitted
that updates an external database or a similar action that involves external system calls
that could introduce additional latency. In this case there may be a significant difference
between the two measures of service time.

The choice of service time is difficult; process latency is a more accurate measure of the
delay a tuple sees as it moves through the topology, so may be more appropriate for
analysis of individual paths through the topology. However, the execute latency captures
the true time before an executor is ready to serve the next tuple, so is a truer representation
of the executor’s service rate. For this reason we use the execute latency in our modelling.

It is important to note that the execute and process latencies metrics are not point
measurements. The latencies are measured at a rate set by the metric sample rate (see
section 2.13.5). These measurements are then averaged (for each task) over the metric
bucket period and this averaged value is reported as the latency for that task. Therefore,
if the tuple randomly chosen by the metrics sampling takes a significantly long time to
process, it will skew the average for that metric bucket period.



4.10. PREDICTING SERVICE TIMES 95

4.9.1 Executor co-location effects on service time

As described in section 2.4, the executors that run the spout and bolt code are actually
two separate threads (the ULT and EST) which are hosted by a worker process which
itself consists of a network thread, several other executors and the WPST, all within a
JVM instance (see section 2.4.3). Because of this high number of threads co-located on a
single worker process, the actual value of the process/execute latency can be misleading.
It is possible that one executor could be paused by the JVM whilst another is running.
Because the latencies reported by Storm are wall-clock times (the current time is compared
to a start time4 at the point the metric is recorded) these include any periods where an
executor’s ULT is paused. This means that executors, on worker processes which host
a large number of co-located executors, could report longer process/execute latencies
compared to the same executors running the same code on a more sparsely populated
worker process. This has implications for predicting the effect on the expected service
time of co-locating executors in a proposed topology physical plan.

4.10 Predicting Service Times

Predicting the effects of executor co-location for a proposed physical plan is a difficult
proposition. The multi-threading behaviour (when and which threads are paused) can
vary depending on the operating system and JVM implementation used to run Storm, as
well as the interplay between them.

There are many possible modelling approaches that could be applied to the service time
prediction. However, we have opted for a straightforward approach based on weighted
averages of the measured service time from a running source physical plan. Discussion of
possible future modelling approaches is given in section 6.3.4.

4.10.1 Weighted average service time

As with other predictions for properties of a proposed plan, the service time averages are
dependent on the incoming stream groupings (see section 2.5).

Input streams containing only shuffle groupings

Components with only incoming shuffle groupings will receive a load balanced input across
all of their executors. As a result, it is reasonable to take an average of the measured
service times across the executors of each component and use this as the predicted service
times for the proposed executors of that component.

4Using the Java System.nanoTime() function.



96 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Input streams containing at least one fields grouping

For components with one or more fields grouped incoming streams, the executors of a
given component may receive an uneven amount of input tuples depending on the tasks
they contain. Therefore, an average across all executors of the component will not be
appropriate as certain field values may lead to significantly different service times but may
only be activated rarely, skewing the average.

To account for this, the average service time for components with incoming fields grouped
connections must be weighted by the level of activation of each task that makes up their
executors. For this we use the ETIP given by equation 4.11 (see section 4.7.2) to weight
the contribution that each task will make to the proposed executor’s service time.

4.11 Transfer Latencies

Another source of delay within a topology, which needs to be accounted for in predicting
the end-to-end latency of a proposed tuple flow plan, is the time taken for tuples to transfer
from one executor to another. There are three types of transfer between executors in the
tuple flow plan:

Local Where tuples are transferred between executors on the same worker process. This
involves direct transfer from the EST to the downstream ERQ and is assumed to be
almost instantaneous.

Inter-local Where tuples are transferred between worker processes on the same worker
node. In this case tuples are serialised and placed on the WPTQ where they are
issued to a port on the same worker node. This involves transferring through the
worker node’s local network interface but involves no transfer across the network.

Remote This is the same as Inter-local transfers but for worker processes on separate
worker nodes. This involves a transfer across the network between worker nodes.

As discussed in chapter 3, none of the previously published works focusing on model driven
auto-scaling have taken transfer latency into account. Ignoring this additional source of
latency is a major omission and ours is the first end-to-end modelling work to account for
this properly.

The assumptions behind ignoring transfer latencies fall foul of several of the fallacies
of distributed computing: namely that latency and transport costs are zero and that
bandwidth is infinite. For small topologies of only a couple of connected components, the
introduction of network latencies may not be an issue. However, for larger topologies the
network latency can quickly become a significant factor.



4.11. TRANSFER LATENCIES 97

As an example, take a topology which is formed of 6 components with 5 connections
and has an end-to-end latency of 5ms when all those connections are either local or
inter-local (i.e. the topology is running in several worker processes on one worker node).
If an additional worker process on a separate worker node, which has a transfer latency
of 0.1ms, is now added then some routes through the topology could involve all remote
connections. This situation would result in a 10% increase in the end-to-end latency of
those remote only paths. If those paths happen to have high routing probabilities they
could have a significant effect on the average end-to-end latency of the topology. As we
are hoping that our modelling system will allow the best proposed physical plan to be
selected from many possible options (see section 1.3.4), this 10% increase could be the
difference between a valid plan being accepted or rejected. Therefore, modelling the effect
of network transfers is important.

4.11.1 Predicting transfer times

As part of the prediction of proposed physical plans the performance modelling system
will predict the type of connections between the proposed executors. For local connections
we assume that the latency will be zero. Details on the prediction of the latency due to
the other two connection types are given below.

Inter-local connections

The main difference between local and inter-local connections is the encoding of tuples into
a binary representation (serialisation) and then sending this binary package to another
network port (belonging to another worker process) on the same worker node.

The time taken to serialise tuples and the corresponding de-serialisation when they are
received, a process commonly referred to as SerDes, can be significant. Users can supply
their own SerDes implementations for complex custom Java classes, which can often lead
to significant delays in tuple transfers5.

In Storm, serialisation of tuples occurs as they are transferred from the EST processing
batch (see figure 2.8 in section 2.8) into the remote dispatch map to be passed to the
WPTQ. This operation happens within the EST, which is outside of Storm’s metrics
system and therefore does not provide any timing information. Modifying the code to
provide this information would also be difficult due to the multi-threaded nature of the
codebase and the fact that delay due to message serialisation is a key bottleneck in DSPS
performance, so adding additional computation at this critical point is not desirable.

For simple tuple payloads such as integers, doubles or short strings, the impact of SerDes
on the topology’s end-to-end latency is likely to be negligible. Due to this fact and the lack

5See: https://storm.apache.org/releases/1.2.2/Serialization.html



98 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

of metrics to allow prediction of the SerDes delay, we have decided to exclude modelling
this aspect of the transfer latencies. This omission may introduce errors into the end-to-end
latency predictions, however as stated above these are expected to be small for common,
simple tuple payloads. Discussion of possible future work to predict SerDes delay is given
in section 6.3.5.

Remote connections

Remote connections, like inter-local, include SerDes delays but also the time taken for the
serialised tuples to pass across the network to a remote worker process. Whilst we are
assuming that the SerDes delay will be negligible, we need to account for the network
transfer latency. To do this we added a custom metrics gathering system to the Storm
worker nodes which measures round trip latencies between each pair of worker nodes in
the cluster. The details of the implementation of these metrics are given in section C.2.3.

From the measured round trip latencies, recorded between each pair of worker nodes, we
take half the measured value as the network transfer latency between the two worker
nodes. We then take the median of all measured network transfer latencies between a
pair of worker nodes and use this value as the predicted network transfer latency for any
proposed remote connections between executors on those worker nodes.

The median latency is used in order to exclude the effect of latency spikes in the measure-
ments returned by the Internet Control Message Protocol (ICMP) packets. Discussion of
more advanced network latency prediction methods is given in section 6.3.6.

4.12 Tuples Per Input List

While the ULT of the executors process individual tuples, the unit of exchange between
an EST and a downstream ERQ are lists of tuples (see section 2.8.1). The number of
tuples in each list arriving at the ERQs affects the performance of the associated executor
(see section 4.2.2). Therefore, it is important to be able to predict the average number
of tuples in each tuple list being submitted to the ERQs. This value is not recorded by
default in Storm. Whilst it would be possible to alter the underlying Storm code to record
this value and use it to make predictions about proposed physical plans, one of the aims of
this research is to create a performance modelling system that can work with mainstream
DSPSs in their current unmodified state. Therefore, we estimate the number of tuples (I)
in the input lists, arriving at the ERQ of any given executor, using relevant metrics and
parameters that Storm provides by default.

As described in section 2.8, the input tuple lists into each ERQ are produced via the
local transfer function (LTF) either from a list of tuples bound for tasks on the same



4.12. TUPLES PER INPUT LIST 99

worker process (local dispatch list) or from a de-serialised list which was transferred from
a remote worker process (these cases are illustrated at the top of figure 2.8). Both of these
situations take as input the batches of individual tuples taken off the ESQ’s Ring Buffer;
these are shown as the processing batch of the EST in figure 2.8.

In order to estimate the expected input list size (E[I]) for a given downstream ERQ, we
need to estimate the expected input list size for all logical connections (both local and
remote transfers) arriving at that ERQ. To do this we first need to estimate the processing
batch size (Z) coming off the ESQs of the upstream executors.

4.12.1 Processing batch size estimation

Section 2.8 describes how the ESQ receives individual tuples from the executor tasks and
how these then pass through the Disruptor queue mechanism as outlined in section 2.7.
The EST continually polls the ESQ Ring Buffer and, when tuples are available, will extract
the entire Ring Buffer population for processing. The extracted tuples form the processing
batch (see figure 2.8) and the expected number of tuples in that batch (E[Z]) is a function
of the tuple arrival rate (λ) into the ESQ and the delivery interval Y , which is the expected
time interval between the production of processing batches from the ESQ:

E[Z] = λE[Y ] (4.12)

The delivery interval is dependent on several factors. The main one is the processing
speed of the EST. The Ring Buffer will not be polled until the processing batch is served
completely. However, Storm provides no metrics on the EST processing and due to the
design of this aspect of Storm it would be very difficult to instrument and extract the
required processing rate metrics. However, as the EST is performing a simple sorting
operation, it is reasonable to assume that this operation will be completed in a negligible
time period and therefore that servicing of any given processing batch will occur almost
instantaneously (service rate µ ≈ ∞). Using this simplifying, yet realistic, assumption
the delivery interval will now depend on which event occurs first: the ESQ input batch
reaching its maximum value (k) or the flush interval (δ) completing. Both events will
trigger a fresh transfer of tuples into the Ring Buffer and thereby trigger the EST to
extract the entire available tuple population into the processing batch.

The calculation of the expected delivery interval (E[Y ]) has to weight the contribution of
three main aspects: k arrivals into the input batch, the flush interval completing and the
case where no arrivals occur within the flush interval (i.e. a very low arrival rate).



100 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Full input batch

To account for the possibility of k arrivals before the flush interval (δ) completes, we need
to calculate the expected time interval (Xk) until the kth arrival.

E[Xk] =
δ∑

x=0
xP (Xk = x) (4.13)

If we assume that arrivals are from a Poisson process, with rate λ, then the probability
that Xk = x is given by the probability density function (fk(x)) of the Erlang distribution
(which gives the expected waiting time for k occurrences of an event):

P (Xk = x) = fk(x) = λkxk−1e−λx

(k − 1)! (4.14)

Where x, λ ≥ 0. Substituting equation 4.14 into equation 4.13 (and multiplying it by x)
gives:

E[Xk] =
∫ δ

0
xfk(x) dx =

∫ δ

0

λkxke−λx

(k − 1)! dx (4.15)

We can simplify things further by noting that:

fk+1(x) = λk+1xke−λx

k! = λx

k

(
λkxk−1e−λx

(k − 1)!

)
= λx

k
fk(x)

∴ xfk(x) = k

λ
fk+1(x) (4.16)

Using equation 4.16, equation 4.15 becomes:

E[Xk] = k

λ

∫ δ

0
fk+1(x) dx (4.17)

The integral in equation 4.17 is equivalent to P (Xk+1 ≤ δ), which can be found using the



4.12. TUPLES PER INPUT LIST 101

cumulative distribution function (CDF) of the Erlang distribution:

P (Xk ≤ x) = 1−
k−1∑
j=0

(λx)j
j! e−λx (4.18)

∴ P (Xk+1 ≤ δ) = 1−
k∑
j=0

(λδ)j
j! e−λδ (4.19)

Substituting equation 4.19 into 4.17 gives:

E[Xk] = k

λ

1−
k∑
j=0

(λδ)j
j! e−λδ

 (4.20)

Flush interval completes

To account for a flush interval (δ) completing before k tuples arrive in the input batch, we
need to weight the flush interval by the probability that Xk (the interval until k tuples
arrive) is greater than δ:

δP (Xk > δ) = δ(1− P (Xk ≤ δ))

Using the Erlang CDF shown in equation 4.18 we can replace P (Xk ≤ δ) in the equation
above, however we need to account for the fact that no flushes can happen without a tuple
being present and therefore we sum from j = 1 not j = 0 as in equation 4.18.

δ[1− P (Xk ≤ δ)] = δ

1−
1−

k−1∑
j=1

(λδ)j
j! e−λδ

 = δ

k−1∑
j=1

(λδ)j
j! e−λδ

 (4.21)

No arrivals in the flush interval

Finally, we have to account for the fact that no arrivals may occur in the flush interval (δ).
We therefore need to add δ weighted by the probability of zero arrivals in δ (P0). However,
we also need to include a further delivery interval (Yk) as the current period has completed
with no action and so a further wait period is required:

P0(δ) + P0(E[Y ]) (4.22)



102 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Delivery interval

Putting equations 4.20, 4.21, 4.22 together gives a formula for estimating the expected
delivery interval for a given ESQ:

E[Y ] = k

λ

1−
k∑
j=0

(λδ)j
j! e−λδ

+ δ

k−1∑
j=1

(λδ)j
j! e−λδ

+ P0(δ) + P0(E[Y ])

The P0(δ) term can be merged into the second term by changing the sum to include
j = 0. This leaves P0(E[Y ]) as the third term, which we subtract from both sides to leave
E[Y ]− P0(E[Y ]) = E[Y ](1− P0) on the left hand side. Dividing both sides by (1− P0)
gives:

E[Y ] = 1
(1− P0)

k
λ

1−
k∑
j=0

(λδ)j
j! e−λδ

+ δ

k−1∑
j=0

(λδ)j
j! e−λδ

 (4.23)

As we are assuming that arrivals follow a Poisson distribution, we know that the probability
of k events in interval x is given by:

P (k in x) = e−λx
λk

k!

∴ P (0 in δ) = e−λδ = P0 (4.24)

Substituting equations 4.23, 4.24 into equation 4.12 gives us a formula for estimating the
processing batch size Z:

E[Z] = λ

(1− e−λδ)

k
λ

1−
k∑
j=0

(λδ)j
j! e−λδ

+ δ

k−1∑
j=0

(λδ)j
j! e−λδ

 (4.25)

4.12.2 Transfer list size estimation

Now that we have a way to estimate the ESQ processing batch size (Z) for each of the
ESTs on a worker process, we can estimate the size of the input lists that are transferred
to the downstream ERQs. As shown in figure 2.8, after the ESQ the EST divides the
processing batch into a local dispatch list, for local transfers to executors within the same



4.12. TUPLES PER INPUT LIST 103

worker process, and a remote dispatch map, for transfer to executors on different worker
processes. Eventually, the tuples in these two data structures will form the input tuple
lists that arrive at the ERQs. However, the route these two tuple collections take and the
processes they pass through are different. Figure 4.9 illustrates the two types of path to
the ERQ of destination executor j. The figure shows a local transfer from executor i on
the same worker process (x) as j and a remote transfer from executors k and l which are
on a separate worker process (w).

Processing batch

ESTi

ERQj

Processing batch

ESTk

Processing batch

ESTl

Local dispatch list

Remote 
dispatch 

map

WPTQw

Worker Process w

Input 
list

Worker Process x

WPSTw

LTFj

WPx 0110101001010110010010
0101010101010101010101

Figure 4.9: Local and remote transfer paths by which tuple lists arrive at the ERQ of
executor j.

As a result of these different paths, the process used to estimate the size of the resulting



104 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

tuple lists arriving at the downstream ERQs via each path is different, but both follow a
similar approach:

1. Calculate the processing batch size (Z) for each EST in the worker process.

2. Calculate the proportion of each processing batch that will be sent to each destination.
We refer to these proportions as the transfer lists.

3. Weight these transfer lists by the activity of the sending entity (executor or worker
process) and calculate a weighted average incoming list size at the receiving entity.

The specific processes used for the local and remote transfers are detailed in the sections
below. To aid in the explanation of the two scenarios, a motivating example topology is
shown in figure 4.10. Unlike previous example topology logical plans, figure 4.10 shows all
executors being logically connected to the Acker executors. This is because all executors
will emit ack tuples to the Ackers and these will be included in the processing batches of
each EST6. Figure 4.11 shows a schematic of the internal transfers within worker process 1
of the example topology, along with the associated transfer lists.

Local transfers

The local dispatch list of each executor, consists of tuples bound for tasks on the same
worker process (see figure 2.8). The dispatch list is then sorted by the worker process’s
LTF into transfer lists for each destination executors, which are then moved directly to the
relevant ERQs. The number of tuples in these lists is a function of the processing batch
size Zi and the GRP (Gi,j) from the source executor i to the local downstream destination
executor j.

Recall that the GRP, discussed in section 4.4, is the probability that any tuple emitted
from executor i will be routed to executor j. By multiplying the processing batch size Zi
by each of the GRPs Gi,j we can calculate the transfer list size Ti,j for each local logical
connection between executors.

Ti,j = Zi,jGi,j (4.26)

These types of local transfers can be seen at the top of figure 4.9 (green path) and as the
green arrows shown in figure 4.11, for the example topology from figure 4.10.

6These connections are excluded in other logical plan visualisations in order to make them easier to
understand.



4.12. TUPLES PER INPUT LIST 105

Figure 4.10: Plan types for an example linear topology runing on two worker nodes.



106 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

ERQ ESQ

Executor: S 1-2

WP1 WPTQ

ERQ ESQ

Executor: A 5-6

ERQ ESQ

Executor: A 9-10

ERQ ESQ

Executor: B 13-14

ERQ ESQ

Executor: Acker 1

Figure 4.11: Example transfers within worker process 1 from figure 4.10.

Remote transfers

The lower half of figure 4.9 (red path) shows the route taken by tuples arriving at executor
j from non-local executors on worker process w. Each remote source executor k will still
send Tk,j tuples on average, as per equation 4.26, to destination executor j. However, the
EST of each source executor will combine all the tuples for remote destination executors
into one remote dispatch map. These maps will then be combined as they are taken off
the WPTQ, by the WPST, into lists of tuples bound for all executors on the receiving
worker process. The receiving worker process’s LTF will then sort these received lists into
lists for each executor. This process means that, for remote transfers, the input tuple
lists emitted by the receiving worker process’s LTF can potentially contain tuples from
multiple source executors. This is in contrast to local transfers which will only contain
tuples from a single source executor.

The size Tw,j of the input tuple lists arriving at destination executor j from a remote
worker process w, are a function of the processing batch sizes and GRPs of all the executors
on worker process w sending to j, as well as the processing batch size (ZW

w ) of w’s WPST.

Because the WPTQ is a Disruptor queue, just like the ESQ, we can use a similar approach
to that described in section 4.12.1, to estimate the WPTQ processing batch size (ZW

w ).
However, the delivery interval prediction for the ESQ cannot be directly applied to the
WPTQ. In the ESQ the input is individual tuples and in the WPTQ it is a map linking
from task identifier to a list of tuples. This affects the values of the arrival rate (λ) and



4.12. TUPLES PER INPUT LIST 107

the input batch size limit (k).

The arrival rate has to be converted into maps per second instead of the tuples per second
(ts−1) assumed for the ESQ. This requires an estimate of the average number of tuples
(Mw) within a remote dispatch map arriving at the WPTQ of worker process w.

From this we can use the tuple arrival rate (λ), which is reported by the WPTQ (in
ts−1) and is measured as maps are placed onto the Ring Buffer, to alter the λ term in
equation 4.25 appropriately:

λmap = λ

Mw

(4.27)

We can estimate the average number of tuples (Mw) in a remote dispatch map arriving at
the WPTQ by using the expected average size Mi,w of remote dispatch maps sent from
each source executor i on worker process w and weight them by the expected proportion of
arriving maps that will have each size. Mi,w is calculated by taking the processing batch
size Zi of the source executor i and multiplying it by the sum of GRPs from i to the set
JRi of all remote and inter-local executors downstream of i:

Mi,w = Zi
∑
j∈JR

i

Gi,j =
∑
j∈JR

i

Ti,j (4.28)

An example of these values for the situation shown in figure 4.11 is given in table 4.5.

Table 4.5: Table showing the amount of tuples, on average, in each remote transfer map
sent from an executor to the WPTQ in figure 4.11.

Source Remote dispatch map size (Mi,w)

S 1-2 M1−2,WP1 = Z1−2(G1−2,7−8 +G1−2,Acker 2)
A 5-6 M5−6,WP1 = Z5−6(G5−6,11−12 +G5−6,15−16 +G5−6,Acker 2)
A 9-10 M9−10,WP1 = Z9−10(G9−10,11−12 +G9−10,15−16 +G9−10,Acker 2)
A 13-14 M13−14,WP1 = Z13−14G13−14,Acker 2

Acker 1 MAcker 1,WP1 = ZAcker 1GAcker 1,3−4

In order to estimate the expected average input map size (Mw) arriving at the WPTQ, we
need to weight each of the remote dispatch map sizes (Mi,w) by the proportion of all input
maps that have that size. To do this we need to evaluate the relative incoming flow of
maps from each executor to the WPTQ.

Let σi,j be the rate at which executor i emits tuples to a non-local executor j ∈ JRi (across



108 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

all streams connecting the two executors). Let λw be the total arrival rate of tuples at the
WPTQ of worker process w.

λw =
∑
i∈Lw

∑
j∈JR

i

σi,j

 (4.29)

Where Lw is the set of all executors in worker process w. To find Mw we multiply each
Mi,w by the proportion of λw that the source executor is responsible for and sum over all
executors in w:

Mw =
∑
i∈Lw

(
Mi,w

(∑
j∈JR

i
σi,j

λw

))

Rearranging and substituting equation 4.28 gives:

Mw = 1
λw

∑
i∈Lw

∑
j∈JR

i

Ti,j
∑
j∈JR

i

σi,j

 (4.30)

Both σi,j and λw are calculated as part of the arrival rate prediction methods described
in section 4.8. Using equation 4.30 with equation 4.27 and substituting the appropriate
terms into the Disruptor queue processing batch size estimation (equation 4.25) allows us
to estimate the expected worker process processing batch size (ZW

w ) in terms of maps. We
then multiply this by Mw to get ZW

w in terms of tuples.

Once we have an estimate for ZW
w , we then need to estimate what fraction of it will be

sent from w to each downstream non-local executor j. We have already calculated the
transfer batch sizes from each source executor i to each destination executor j (Ti,j - see
section 4.12.2). From these we can calculate the total average transfer out of w:

Tw =
∑
j /∈Lw

∑
i∈Lw

Ti,j


Using this we can find the fraction going to executor j and multiply this by ZW

w to estimate
the average number of tuples arriving at j from w:

Tw,j = ZW
w

(∑
i∈Lw

Ti,j
Tw

)
(4.31)

In reality, all the tuples bound for the executors on a remote worker process will be grouped



4.12. TUPLES PER INPUT LIST 109

together into one list and sent across the network. However, we don’t need to consider this
stage as when they reach their destination they will be split back into the per executor
lists.

4.12.3 Input list size estimation

Once we have estimates for both the average local (Ti,j) and remote (Tw,j) transfer list
sizes we can estimate the average input list size (Ij) to each destination ERQ j. However,
the expected value of Ij is not just an average of all incoming tuple lists. Due to the
variation in GRPs and the relative activity of the upstream executors, it is possible that a
destination ERQ will receive more lists of certain sizes than others. Therefore we need
to weight the average list size of each tuple list arriving at executor j by the relative
proportion of the tuple list arrival rates (λT ).

Tuple list arrival rate

Calculating the tuple list arrival rate λT involves first calculating the tuple arrival rate
at each destination executor j of tuples sent from source executor i (λi,j). This value is
found as part of the arrival rate calculations described in section 4.8. Once we have this
per logical connection tuple arrival rate, the next step then depends on whether a given
connection is local or remote:

Local incoming connections For these types of connections we divide the tuple arrival
rate (λi,j) by the estimated local transfer list size (Ti,j). This gives the local tuple list
arrival rate (λTi,j) at each destination executor (j) for each local connection from executor
i.

λTi,j = λi,j
Ti,j

(4.32)

Remote incoming connections For these types of connections, the transfer list size is
a function of all source executors sending from worker process w to j. Therefore, we need
to sum the tuple arrival rates over the set Lw, j of all source executors i in w sending to j.

λTw,j =
∑
i∈Lw,j

λj,i

Tw,j
(4.33)



110 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Expected input tuple list size

Now that we have the arrival rates for the incoming tuple lists at each destination executor
j, we can weight the transfer list sizes by their relative arrival rates. The sum of these,
over the set of local executors Lw and remote worker processes V , gives the weighted
average input tuple list size (Ij) at executor j:

λTtotal =
∑

λTi,j +
∑

λTw,j

Ij =
∑
i∈Lw

λTi,jTi,j

λTtotal
+
∑
w∈V

λTw,jTw,j

λTtotal
(4.34)

4.13 End-to-end Latency

Now that we have methods to estimate all the variables outlined in section 4.1, we can
estimate the end-to-end latency for any physical path through the proposed topology
tuple flow plan. Using the topology shown in figure 4.10, a sample path in the topology’s
tuple flow plan is shown in figure 4.12. This shows all of the stages that contribute to the
final end-to-end latency, including delays at the executors, worker processes and transfer
latencies across the network.

Executor: B 13-14

ESQ ESTERQ Task
13

WPTQ WPST

WP: 1 Executor: Acker 2

ESQ ESTERQ Acker
2

Network

Local

Executor: S 3-4

Task
3

ESQ EST WPTQ WPST

WP: 2 Executor: A 5-6

ESQ ESTERQ Task
6

Network

S
3-4

A
5-6

B
13-14

Acker
2

Figure 4.12: An example path through the tuple flow plan of the topology shown in
figure 4.10.

Using the arrival rate, service time and input tuple list size prediction methods detailed in
the sections above, we can calculate the delay due to the ULT element of the executors in



4.13. END-TO-END LATENCY 111

the tuple path using the method discussed in section 4.2.1. The network transfer latencies
can be estimated via the method laid out in section 4.11. This then leaves the delay due
to windowing behaviour within the bolt tasks, delays at the EST element of the executors
and the delay due to the WPST of the worker processes to be estimated.

4.13.1 Windowing delay

As described in section 2.12, a common operation in stream processing is to window the
incoming message stream to allow lower frequency results summaries to be calculated
and/or to batch process incoming messages for higher throughput. This aggregation of
incoming tuples will affect the I/O ratio of any executors that implement this functionality.
This aspect is dealt with in section 4.6.

As well as affecting the I/O ratio of the executors, windowing also affects the latency that
an incoming tuple experiences. After it has passed through the ERQ, Storm’s windowing
application programming interface (API) will place the tuples into an internal buffer where
they will wait until their corresponding windows complete. This introduces an additional
delay, before processing in the ULT, that needs to be included in the calculation of the
total delay across the executor.

To account for this windowing delay, we need to know the time duration τW that the
window covers. Depending on the configuration of the windows, τW may be fixed or
variable. If a window’s length is based on time (e.g. the window completes every 5
seconds), then τW will be a constant value. Alternatively, if the window’s length is based
on counts (e.g. the window completes when 10 tuples have arrived), then τW will vary per
window based on the tuple arrival rate (λ).

Storm’s API allows us to programmatically access the configuration of each of the topology
components and the window configurations are included in this. For window configurations
where the length is based on time, we can use the configured window length as τW . However,
for count based window lengths (CW ), we still need to calculate the corresponding window
duration for these values using the arrival rate.

τW = CW
λ

Tumbling windows

For the simple sequential batches of a tumbling window implementation, once we have the
window duration τW we can estimate the likely average delay a tuple will experience whilst
waiting for the window to complete. We do not know the distribution of arrivals into the
window, but they are unlikely to be Poisson distributed after passing through the various



112 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

sections of the Disruptor queue (see section 2.7). However, as a first approximation we
assume that tuples arrive at a uniform rate over τW time. This implies that on average a
tuple will be delayed by τW

2 time whilst the window completes.

Sliding windows

For the sliding window case the modelling is more complicated. As described in section 2.12,
a given tuple can be present in several windows when a sliding window approach is used.
This windowing implementation in Storm will automatically acknowledge a tuple once it
has passed out of all possible windows. This more complex case is left for future research.

Window service time

In calculating the additional delay due to windowing, the time taken to process the whole
window (bW ) also needs to be considered. The execute latency reported by Storm for
windowed bolts relates to the time taken to add tuples to the internal window buffer(s).
This is fortunate as this per tuple service time allows the ULT simulator to be applied
to windowed bolt executors unmodified. The latency of the window execute method is
not recorded explicitly, however the process latency reported for the windowing executor
will equate to the time taken for all tuples in the input window to be acknowledged. This
measure will not include any additional processing such as database connection clean up
etc, but can be used as an approximation of the window service time and is used as our
measure of bW .

The prediction of bW , for the proposed executors of a windowing component, depends on
the type of window length:

Count based window lengths For this type of window configuration the window
duration (τW ) will vary depending on the arrival rate (λ). However, the number of tuples
in each window will be constant. It is therefore reasonable to assume that the time taken to
process the window will also be constant. Using this assumption we can use the approach
described in section 4.10, for predicting the service time of the executor ULT, to predict
bW for the proposed executors of windowing components.

It should be noted that the same points raised in the discussion of predicting the non-
windowed executor service times also apply to predictions of the window service time (see
section 4.10).

Time based window lengths For this type of window configuration τW is constant.
However, the number of tuples in the window will vary depending on the arrival rate. The
variable number of tuples in each window mean that we cannot assume that the window
service time is constant for all windows, it will instead be a function of the arrival rate.



4.13. END-TO-END LATENCY 113

This additional dependence on the arrival rate means that the service time prediction
method described in section 4.10 will not be applicable.

Instead, a way to predict the window service time for a given time based window length
and arrival rate is required. This will require creating a model which can capture the
interplay between these variables. This work is left for future research and the current
modelling approach will focus on count based tumbling windows only.

4.13.2 Executor send thread

As described in section 2.8, once tuples are created by the executor’s tasks they are placed
individually onto the ESQ. From here the EST will extract the tuples into the local
dispatch lists and remote dispatch maps for routing to their destination executors. As the
ESQ is a Disruptor queue, a similar approach to that used for the ERQ and ULT could
be applied (see section 4.2.2). However, as discussed in section 4.12.1, by default Apache
Storm does not provide any service time information for the EST operations. Adding such
a metric would be exceedingly difficult as the operations involved in creating the local
dispatch list and remote dispatch map are outside of the scope of Storm’s metric system
and involve functions from both the executor and worker process code.

As with the input tuple list size calculations described in section 4.12, we can assume that
the relatively simple sorting operation that the EST performs is practically instantaneous
(µ ≈ ∞) and therefore that the delay due to the EST element of the executor will be
governed by the time it takes the ESQ input batch to either be full (k tuple arrive) or the
flush interval (δ) to complete. This period is equivalent to the delivery interval (Y ) given
by equation 4.23. However, when predicting tuple delay as opposed to the transfer batch
size, we do not need to consider the probability (P0) of no tuples arriving as, by its very
definition, tuple wait time implies that a tuple has already arrived.

Therefore, the predicted delivery interval (YEST ) for the ESQ is given by combining
equation 4.20 and equation 4.21:

E[YEST ] = k

λ

1−
k∑
j=0

(λδ)j
j! e−λδ

+ δ

k−1∑
j=1

(λδ)j
j! e−λδ

 (4.35)

However, this will not be the average tuple latency (WEST ) across the ESQ and EST. We
assume that tuples can arrive at any time during the delivery interval. Therefore a tuple
could arrive early and wait for almost all the interval or arrive just before the interval ends
or at any point in between. For simplicity we assume the distribution of these arrivals
within the delivery interval is uniform and therefore that the average time a tuple will



114 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

wait within the input batch of the ESQ is half this period:

E[WEST ] = E[YEST ]
2 (4.36)

4.13.3 Worker process send thread

Similar to the EST delay described above, the delay due to the WPST also suffers from
a lack of service time metrics. However, just like the EST, the WPST is performing a
relatively simple sorting and routing operation and therefore it seems reasonable to assume
that the processing will be almost instantaneous (µ ≈ ∞). This means that the delay at
the WPST will be dominated by the waiting time at the WPTQ. As in the case of the
EST, we can use the delivery interval YWPST of the WPTQ to approximate the sojourn
time across the WPST.

However, we cannot simply use equation 4.35, as this assumes individual tuples are arriving
into the queue. To use this equation we have to alter the λ term to account for the fact
that remote dispatch maps are the input to the WPTQ rather than individual tuples.
Using the estimated average map size Mw, found in equation 4.30, with equation 4.27 and
substituting the resulting remote dispatch map arrival rate λmap for the tuple arrival rate
λ in equation 4.35, allows us to estimate the delivery interval YWPST for the WPTQ.

As with the EST delay discussed above, the delivery interval will not be the average tuple
sojourn time (WWPST). We assume that tuples can arrive at any time during the delivery
interval and that the distribution of these arrivals is uniform. Therefore, the average
time a tuple will wait within the input batch of the WPTQ is half the estimated delivery
interval.

4.13.4 Worker process receiving logic

When the lists of tuples from other worker processes arrive at a port on a worker node they
are transferred via the network client to the worker process where they are sorted by the
LTF into lists for each destination executor. This process will introduce some additional
delay for tuples passing through it. However, Storm does not provide any metrics for the
performance of the network client or the LTF. As with the sorting functions of the EST
and the WPST, we have assumed that the worker process receiving logic is essentially
instantaneous and that any latency it adds to a tuple’s end-to-end latency is negligible.



4.13. END-TO-END LATENCY 115

4.13.5 Predicting complete latency

Once we have methods for predicting the delays for the various elements of a given physical
path through a topology’s tuple flow plan, we can estimate the average end-to-end latency
of that path. However, the physical path end-to-end latency cannot be validated on its
own as Storm does not provide a comparable metric for this measure. Section 2.13.2
describes how the complete latency, Storm’s measure of end-to-end latency, is calculated
and figure 2.13 illustrates how the measured complete latency differs from the physical
path end-to-end latency which our method predicts.

Time

init delay

Measured complete latency

Predicted end-to-end latency

ack_init ack_ack 

Figure 4.13: Timeline for the tuple path shown in figure 4.12, comparing the predicted
end-to-end latency to the measured complete latency.

The path illustrated in figure 4.12 includes the ack delay, which the measured complete
latency will also include, however it also includes the init delay which will not form part
of the measured complete latency for that path. This situation is illustrated in figure 4.13.
Therefore, in order to estimate the expected complete latency for a given path, the init
delay must be subtracted from the predicted end-to-end latency of the physical path. The
init delay of a given path can be predicted by estimating the end-to-end latency of the
path from the source spout executor to the Acker executor of the tuple physical path.
Figure 4.14 illustrates the init delay path for the tuple physical path shown in figure 4.12.
This prediction can utilise all the same methods as the main tuple physical path end-to-end
latency prediction.

We now have a way of estimating the complete latency of every physical path in tuple
flow plan. However, the complete latency reported by Storm is not measured for every
path. As shown in figure 2.14 the complete latency is only reported for the last child tuple
of the tuple tree rooted at the original source tuple. Therefore, in order to estimate the
likely complete latency that Storm would report for a proposed physical plan, we need
to select the longest path from each spout on each output stream (which is how Storm



116 CHAPTER 4. TOPOLOGY PERFORMANCE MODELLING

Executor: S 3-4

Task
3

ESQ EST

Executor: Acker 2

ESQ ESTERQ Acker
2Local

Figure 4.14: An example path that the ack_init message from the spout will take to the
Acker executor for the path shown in figure 4.12.

breaks down the complete latency metrics). An average of these values will more closely
approximate the average complete latency reported by Storm.

4.14 Summary

The many modelling aspects described in the sections above, that form the performance
prediction for a given physical plan, are summarised below:

1) Predict the incoming workload level (section 4.3).
2) Predict the routing probabilities (SRPs and GRPs) for the proposed physical plan

(section 4.4).
3) Predict the input to output ratios for the proposed physical plan (section 4.6).
4) Use the predicted incoming workload level, routing probabilities and I/O ratios to

calculate the expected tuple arrival rate at each element of the proposed tuple flow
plan (section 4.8).

5) Predict the service time of the executors (section 4.9).
6) Estimate the tuples per input list/map at each ERQ and WPTQ (section 4.12).
7) Simulate the executor ULT delays (section 4.2.2), EST delays (section 4.13.2) and

WPST delays (section 4.13.3).
8) Estimate the network transfer delay between each worker node in the cluster (sec-

tion 4.11).
9) Generate all physical paths through the tuple flow plan from each spout to each

Acker.
10) Calculate the end-to-end latency of each physical path from the latencies calculated

above.
11) Estimate the complete latency from the predicted physical path end-to-end latencies

(section 4.13.5).



Chapter 5

Evaluation

This chapter details the results of the evaluation of the modelling processes outlined in
chapter 4. It evaluates the accuracy of the predictions made by the modelling system
implementation described in section 5.1, using data gathered by the system outlined in
section 5.2.

5.1 Modelling System Implementation

The modelling system implementation (named Storm-Tracer) consists of three main
components: metrics gathering; topology structure storage and analysis; and performance
modelling. Figure 5.1 shows how these major components interact with an Apache Storm
cluster.

When the Storm scheduler creates a new physical plan, this is issued to the Storm-Tracer
system which will store this in the topology structure store. The performance modelling
system will then enact the procedures outlined in chapter 4 by querying the metrics
system to obtain the various summary statistics needed to perform the modelling. Once
an estimate of the end-to-end latency for the proposed physical plan has been calculated,
it is returned to the Storm scheduler which can then decide if it wishes to deploy the plan
or create a new one.

Further details of the implementation of the modelling system used in this evaluation are
given in appendix C.

5.2 Evaluation System

Each of the modelling approaches detailed in chapter 4 requires a set of input metrics
from a running source topology. Similarly, in order to ensure that the prediction methods
are producing accurate results for a proposed physical plan, metrics from the topology

117



118 CHAPTER 5. EVALUATION

Performance 
Modelling API

Metrics and 
Monitoring API

Graph 
Database

Storm Tracer

Time Series 
Database

Proposed 
Physical Plan Administration API

Scheduler

Nimbus Node

Worker Node

Supervisor

Worker
Process

Metrics

Worker
Process

Metrics

Real Time Monitor

Worker Node

Supervisor

Worker
Process

Metrics

Worker
Process

Metrics

Real Time Monitor

Topology 
Structure API

Modelling 
Results

Figure 5.1: The various components of the Storm-Tracer system.

when configured according to that proposed plan also need to be available. In order to
provide both the source and actual performance metrics, a data gathering system capable
of recording the metrics and physical plans of multiple topology configurations was created.

5.2.1 Data gathering

The data gathering system consists of an experiment control program that processes several
pre-defined topology configurations (see section 2.6.2). An experiment configuration file
lists a number of steps, with each step defining the parallelism of each component in the
topology and the number of worker processes assigned to that topology. The experiment
configuration also defines the length of the step and a burn-in period. For each step, the
experiment controller uses the Storm control node (Nimbus) client to issue a rebalance
command to alter the topology configuration to match the new step. The default Storm
scheduler (EvenScheduler — which uses a round robin approach) is used to convert the
topology configurations into physical plans. At this point the experiment controller logs
the start of the experiment step. It then waits for the defined burn-in period so that the
topology can stabilise after the rebalance. Once the burn-in period finishes, the experiment
controller logs a start event and then waits for half the defined step running period. At
the halfway point the controller will save the current topology physical plan to a graph
database. The controller will then wait for the rest of the running period to complete
before logging a stop event and moving on to the next experiment step. These stages of
the data gathering process are shown in figure 5.2.

At the end of this process there will be a series of logged start and stop event timestamps.
These timestamps are logged in the same database that receives the metrics from the



5.3. EXAMPLE USE CASES 119

Start

Deployment

Burn
In

Stop

Rebalance

Step 0

Start

Burn
In

Stop

Rebalance

Start

Burn
In

Stop

End

Step 1 Step 2

Figure 5.2: Stages of the data gathering process.

topology, therefore the timestamps of these events will be synchronised with those of
the metrics. Using these experimental step periods, the modelling system (outlined in
section 5.1) can predict the performance of the physical plan from one step using the
metrics from another and these predictions can then be compared to the actual performance
of that proposed physical plan.

5.3 Example Use Cases

A variety of test topologies were used to evaluate the modelling process. These included
variations in the number of components and types of stream groupings between them.
These variants are described below and use a common framework to supply input workload.
Figure 5.3 shows this messaging framework. A generator creates input messages with
unique identifiers (UUIDs) which are issued to an outgoing topic on an Apache Kafka1

message broker. These messages are then taken in by a spout component in the Storm
topology; the spout will then add a timestamp field to the tuples it issues to the downstream
components. Each of the components in the topologies will pass this entry timestamp
along as a field within their output tuples. Each component also records the component
name and task identifier for the current instance processing an input tuple. These values
are then appended to a path string which is passed downstream with each of their output
tuples. At the final component in each topology, the entry timestamp is subtracted from
the current timestamp and the difference logged as the end-to-end latency of the particular
path taken through the topology (recorded in the path string). Both this end-to-end
latency and the path followed are then sent back to the Kafka broker and retrieved by
a message receiver program which extracts the values and sends them to the time series
database (TSDB) (used for metrics storage) for later analysis. Obviously, the end-to-end

1https://kafka.apache.org/

https://kafka.apache.org/


120 CHAPTER 5. EVALUATION

latency metric will only be accurate for paths where the spout and sink executors are on
the same worker node. For those paths where this is the case, these measurements provide
a latency metric that is independent of the complete latency and so avoid certain issues
regarding outliers discussed in section 2.13.2 in more detail. This end-to-end latency metric
is referred to as the ground truth latency and is discussed in more detail in section 5.7.1.

Message 
Generator

Apache Kafka

Outgoing Topic

Incoming Topic
Apache Storm

Kafka Spout Sender Bolt

Clock 
Starts

Clock 
Stops

Message 
Receiver

Figure 5.3: Schematic of the messaging framework used by the test topology.

5.3.1 Linear topologies

The most common form of distributed stream processing system (DSPS) topology is a
linear arrangement of components defining a single pipeline of operations. In order to test
the majority of the modelling approaches discussed in chapter 4, several different linear
test topologies have been defined:

Fields to fields

Figure 5.4: Four component linear topology with an I/O ratio of 1.0 and consecutive fields
grouped components.

The fields to fields linear topology, shown in figure 5.4, tests the routing probability
calculations (described in section 4.4) by providing consecutive fields grouped components.
It contains two intermediate components, the first of which (bolt A) is connected to
the spout via a shuffle grouped connection. This takes the input tuple from the spout
(that contains a unique message identifier, the entry timestamp and the path string) and
converts this into a Java class with attributes matching the fields of the input tuple. It
appends its component and task identifiers to the path string in the Java object and
then converts this object into a JSON string representation and, along with the entry
timestamp, emits this in its output tuple which is sent via a fields grouped connection
to the next component. This bolt will also add a key field to its output tuples, which



5.3. EXAMPLE USE CASES 121

takes the form of a single letter of the alphabet (A-P). The key for each output tuple is
assigned according to the distribution shown in figure 5.5. This makes it much more likely
that tuples will be given keys in the lower alphabet range, leading to an unbalanced key
distribution into the executors of the downstream component. The second intermediate
component (bolt B) is the same as the first and will simply deserialise the JSON object,
add the path information, serialise it again and issue an output tuple via a fields grouped
connection using the key generation described above to the final Kafka sender component.
Both the intermediate components (bolts A and B) generate one output tuple for each
input tuple, as denoted by the ratios above them in figure 5.4.

A B C D E F G H I J K L M N O P

Key
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

W
ei

gh
t

Figure 5.5: Probability that a given key will be chosen for the fields grouped connections.

Multiplier

Figure 5.6: Three component linear topology with an I/O ratio greater than 1.0.

The multiplier linear topology, shown in figure 5.6, uses a similar design to the fields-to-
fields test topology but with only one intermediate component where for every input tuple
it will create n output tuples, where n is a value chosen from a normal distribution with



122 CHAPTER 5. EVALUATION

mean N and standard deviation σ. This replicates the behaviour of the intermediate node
in a word counting or tweet processing topology that is splitting up blocks of text into
individual words. The multiplier component adds keys to outgoing tuples in the same way
that the fields to fields topology does and so the connection to the sender bolt can be
either shuffle or fields grouped.

Windowing

Figure 5.7: Three component linear topology with an I/O ratio less than 1.0.

The windowing linear topology, shown in figure 5.7, uses a similar design to the multiplier
topology described above. However, instead of producing N output tuples for every input,
the intermediate component in this topology will window W incoming tuples and produce
a single output tuple. This topology is intended to test the modelling approach laid out in
section 4.13.1.

The intermediate component (bolt A) uses Storm’s windowing application programming
interface (API) with a tumbling window arrangement (see section 2.12 for more details).
The value of W is determined at topology submission and is fixed for the lifetime of the
topology. In order to ensure that the batching of tuples does not lose information about
the origin spout task and entry timestamp, the windowing component will sort the W
input tuples by the value of their path field. It then chooses a path at random and one
tuple at random from all those that have followed that path: this tuple will then be used
as the basis for the output tuple. If there is more than one tuple following the chosen path
then the entry timestamps of all those tuples are averaged and this is used as the emitted
tuple’s entry timestamp. As the connection into this component is a shuffle grouping,
this random selection should not adversely affect the distribution of paths logged in the
message receiver.

All in one

The all-in-one linear topology, shown in figure 5.8, combines the multiplier and windowing
components, described above, with consecutive fields grouped components to create a
more complex topology which will test many aspects of the modelling system in a single
topology.



5.3. EXAMPLE USE CASES 123

Figure 5.8: Four component linear topology with both multiplying (I/O ratio > 1) and
windowing (I/O ratio < 1) components which have consecutive fields grouped connections.

5.3.2 Join and split topology

Figure 5.9: Six component topology (all with an I/O ratio of 1.0) with a combined stream
join and split.

As well as linear topologies, Apache Storm provides the ability for bolts to consume
multiple incoming streams and join the tuples of those streams to produce outputs which
themselves can be emitted onto multiple outgoing streams. The join and split test topology,
shown in figure 5.9, uses two separate intermediate bolts — one of which (bolt A) is a
one-to-one component (the same as bolt A from the fields to fields topology) and the
other (bolt B) is a multiplier component (the same as bolt A from the multiplier topology).
These components then feed into a single join bolt (C) which combines the incoming
streams and then emits onto two output streams. This arrangement tests the input to
output (I/O) ratio predictions, described in section 4.6, by providing multiple input and
output streams.

Storm provides a join API2, which provides abstract classes and functions to easily join
separate streams in a single bolt. This requires the incoming streams to be windowed

2https://storm.apache.org/releases/1.2.2/Joins.html

https://storm.apache.org/releases/1.2.2/Joins.html


124 CHAPTER 5. EVALUATION

into batches (see section 2.12). All the tuples arriving in a given duration or count on
both streams will be collected and passed to the joining bolt’s execute method as a single
collection.

The join bolt performs a similar operation to bolt A in the windowing topology. It
chooses tuples at random from the input collection. However, as there are two downstream
components it will pick two at random to send to sender component 1 and a third random
tuple to send to sender component 2. This ensures a clear difference in the output stream
amounts to aid in the I/O ratio testing.

5.3.3 Test topology summary

Table 5.1 summaries all the topologies described in the sections above. The code for these
test topologies can be seen in the StormTimer folder in the digital media attached to this
report or online3.

Table 5.1: Summary of the test topologies used in the performance modelling evaluation.

Topology name No. Components Figure

Fields to fields 4 5.4
Multiplier 3 5.6
Windowed 3 5.7
All-in-one 4 5.8
Join-split 6 5.9

5.3.4 Test configuration

All of the test topologies share an input message rate, into the Kafka broker, of approxi-
mately 16 messages per second (unless stated otherwise). All components were assigned 16
tasks each, this is to match both the number of partitions of the Kafka message topic han-
dling the outgoing and incoming messages from the topology and also so that at maximum
scale out one key would map to one task for any of the fields grouped connections.

Generally, the configuration of each topology experiment involved five steps. Starting with
each component having a single replica in the first step and then, for each following step,
doubling the number replicas of each component until each has 16 in the final step.

Unless otherwise stated, the three-component topologies used two worker nodes with
two worker processes each (four in total) for each experiment. For the four component
all-in-one topologies, three worker nodes with two worker processes each were used and for

3https://github.com/tomncooper/StormTimer

https://github.com/tomncooper/StormTimer


5.4. ARRIVAL RATES 125

the join-split topology four worker nodes with two worker processes each. This ensured
a good mix of connection types between components and avoided overloading of worker
nodes during experiment steps with higher numbers of replicas. The full experimental
configuration used with each of these test topologies can be seen in Appendix E.

5.3.5 Evaluation process

Generally, in the evaluation of the prediction of the various parameters described in the
sections below, each of the experiment steps are used as sources for the metrics used to
predict the performance of the physical plans from each of the other experiment steps.
For example, the metrics from step one will be used to predict the performance of the
topology physical plan from steps zero, two, three and four.

For each of the predictions of the performance parameters of a given step, the prediction
is compared to the actual measured performance of the particular parameters in that step.
The relative error (ε) is used to assess the accuracy of each prediction and is defined as:

ε = P − A
A

(5.1)

Where P is the predicted value and A is the actual measured value of the parameter.
This means that errors will be negative if P is an under-prediction and positive for an
over-prediction. As errors can be negative, the absolute error value is used whenever
summaries of the error are calculated. The calculation of the actual parameter value varies
according to what is being tested. How this value is obtained is described in the sections
below.

5.4 Arrival Rates

The arrival rate prediction methods, described in section 4.8, depend on the accurate
prediction of several key parameters, namely the routing probabilities between each pair
of connected executors and the I/O ratio of each executor.

5.4.1 Stream routing probabilities

The fields-to-fields test topology includes shuffle as well as consecutive fields grouped
connections. This requires using the processes outlined in section 4.5.1 to predict the
routing probabilities of Stream-2 and Stream-3 (see figure 5.4).

To validate the routing probability predictions, the stream routing probability (SRP) for
each of the logical connections in each of the proposed tuple flow plans was estimated and



126 CHAPTER 5. EVALUATION

the relative error calculated according to equation 5.1.

Table 5.2: The median absolute error across all experiment steps for each of the streams
in the fields-to-fields test topology.

Stream Absolute Error (%)

Stream 1 6.2
Stream 2 10.5
Stream 3 9.4

Table 5.2 shows the median absolute error across all connections in all source and proposed
step combinations. The median absolute error is used in order to remove the effect of
outliers in the experimental steps which have high parallelism and therefore contain many
more connections. This table shows that the error on the shuffle grouping is (3-4%)
lower than for the fields grouped connections. Figure 5.10 further breaks down the SRP
prediction errors for each source and proposed step combination. In this figure the median
absolute error in the SRP predictions is calculated using each step as a metrics source to
predict every other step. Step 0 is not shown as this has all components with a parallelism
of one, therefore the SRP must always be 1.0 and so the prediction error is always zero.
Figure 5.10 shows that predicting topologies with lower levels of parallelism (see Appendix
E for configurations) can lead to very low prediction errors of less than 1% for step 1 and
less than 3% for step 2. However, the error increases as the level of parallelism increases.
Each step’s topology has twice the parallelism of the previous step and this progression in
the parallelism is reflected in the progression of the SRP prediction error. Interestingly
step 4, which has the highest level of parallelism, shows the lowest error in predicting the
other step’s physical plan SRPs. This is likely due to predictions using step 4 as a source
always predicting a scale down situation and, as each task in step 4 is in its own executor,
it has the most detailed task to task routing information.

5.4.2 Input/Output ratios

The I/O ratio calculations, described in section 4.7, were tested using both the all-in-one
linear topology (see figure 5.8) and the join-split topology (see figure 5.9). The settings
used for both of these evaluations are described in section E.

To validate the estimates of the input stream I/O coefficients, the predicted coefficient
values for a proposed physical plan were multiplied by the measured total input count
(from the experiment step where the proposed physical plan was running) on each input
stream of each executor to calculate a corresponding predicted output amount on each
output stream. These predicted output counts were then compared to the measured output



5.4. ARRIVAL RATES 127

0 1 2 3 4
Source experiment step

0

2

4

6

8

10

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed step
0
1
2
3
4

Figure 5.10: Comparison of the stream routing probability prediction error for the fields
to fields test topology.



128 CHAPTER 5. EVALUATION

counts and an error calculated using equation 5.1.

0 1 2 3 4
Source experiment step

0.0

0.1

0.2

0.3

0.4
M

ed
ia

n 
ab

so
lu

te
 e

rro
r (

%
)

proposed_step
0
1
2
3
4

Figure 5.11: Median absolute error in the I/O ratio predictions for the all-in-one test
topology.

The results show that, for the all-in-one linear topology, errors were well below 1% across all
source and proposed experiment step combinations, see figure 5.11. This is not surprising
as the all-in-one topology (shown in figure 5.8) has only a single input and output stream
for each component and the windowing bolt (B) is using a count based window of a fixed
size. Also, although the multiplication bolt (A) is multiplying by a random amount, this
value is based on a normal distribution with a fixed mean, so over a sufficient window (20
mins in the case of this experiment) it will converge to the mean multiplication factor.

The join-split topology (shown in figure 5.9) is a more complex test case. The one-to-one
and multiplying bolts both feed into a bolt which windows and combines the streams into
a single batch of tuples (based on count) and then outputs onto two separate streams.
This tests the effectiveness of the least squares regression method, described in section 4.7,
in identifying the coefficients for multiple input streams.

Figure 5.12 shows the median absolute error percentage for the I/O ratio predictions for
each source and proposed experiment step combination for the join-split topology. The
results shown here used a count window of 100 and for every window a tuple was emitted
on each output stream. Figure 5.12 shows that the errors do increase with the parallelism
of the source physical plan, but are less than 6% and are typically less than 1%.

Figure 5.13 shows the I/O ratio errors for the join-split topology using a time based
window of 2 seconds and a more complex routing behaviour. For this experiment the join
component will emit one tuple onto Stream-5 if the count of tuples, in the window, from
the input streams (Stream-3 and Stream-4) are both even or both odd. If this is not the
case it will emit a tuple onto Stream-6. This more complex behaviour is not a simple linear
relationship and figure 5.13 shows significantly higher errors compared to the simpler case



5.4. ARRIVAL RATES 129

0 1 2 3 4
Source experiment step

0

1

2

3

4

5

M
ed

ia
n 

ab
so

lu
te

 e
rro

r (
%

)

proposed_step
0
1
2
3
4

Figure 5.12: Median absolute error in the I/O ratio predictions for the join-split test
topology using a simple routing behaviour.

0 1 2 3 4
Source experiment step

0

10

20

30

40

M
ed

ia
n 

ab
so

lu
te

 e
rro

r (
%

)

proposed_step
0
1
2
3
4

Figure 5.13: Median absolute error in the I/O ratio predictions for the join-split test
topology using a more complex routing behaviour.



130 CHAPTER 5. EVALUATION

shown in figure 5.12. The error reduces as the parallelism of the source topology physical
plan increases. This is likely due to the estimation having a greater variety of input data
to average across. These results suggest that the least square approach is sufficient for
simpler topologies, however a more robust approach such as Gaussian Process regression
which is better able to account for non-linear behaviour may be more appropriate in the
case of more complex routing behaviour.

5.4.3 Executor arrival rates

Similarly to the I/O ratio validation described above, the arrival rate prediction methods
described in section 4.8 were tested against the all-in-one and join-split test topologies.
Figures 5.14, 5.15 show, for the all-in-one and join-split topologies (with simplistic routing)
respectively, the median absolute error when using each experiment step as the source
metrics for the prediction of the arrival rates at each executor of every other experiment
step. As discussed in section 4.3, the incoming workload (the emission rate of every spout
executor) is taken from the actual measured values of the topology running in the predicted
experiment step. As such this is a perfect (or at the very least highly accurate) prediction
of the incoming workload.

0 1 2 3 4
Source experiment step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n 

ab
so

lu
te

 e
rro

r (
%

)

proposed_step
0
1
2
3
4

Figure 5.14: Median absolute error in the arrival rate predictions for the all-in-one topology.

Both these figures show that the error in the arrival rate calculations is generally below
2.5%, being larger for the predicted steps with higher parallelism.



5.5. SERVICE TIMES 131

0 1 2 3 4
Source experiment step

0.0

0.5

1.0

1.5

2.0

2.5

M
ed

ia
n 

ab
so

lu
te

 e
rro

r (
%

)

proposed_step
0
1
2
3
4

Figure 5.15: Median absolute error in the arrival rate predictions, for the join-split topology.

5.5 Service Times

Section 4.10 describes the approach taken in estimating the service time for the executors
of a proposed physical plan. As discussed in that section, the modelling approach is based
on a weighted average of the services times from each executor of a given component in
the source physical plan. Figure 5.16 shows the median absolute error in the service time
predictions for the all-in-one test topology.

What is immediately apparent from this chart is that the prediction errors, ranging from
20% to 300% in the extreme, can be significant. The errors increase with the parallelism
of the source physical plan. This is most likely a result of co-location effects, which were
discussed in section 4.10. In step 0 there is only one executor for each component and
therefore each worker process has a small number of co-located executors. The service
time metrics from these executors will be subject to less thread pausing. However, for step
4, there are 16 executors for each component and therefore many executors in each worker
process. The service times from these executors are likely to be inflated, as long pause
periods will extend the service times compared to the same code running with the same
input on a worker process with fewer assigned executors. When these metrics are used to
predict the service times for executors (in a proposed physical plan) with a lower level
of parallelism they will tend to over-estimate the actual service time. Conversely, using
service time metrics from a physical plan with low co-location, to predict one with high
co-location, will mean that the prediction will tend to under-estimate the actual service
time.



132 CHAPTER 5. EVALUATION

0 1 2 3 4
Source experiment step

0

50

100

150

200

250

300
M

ed
ia

n 
ab

so
lu

te
 e

rro
r (

%
)

proposed_step
0
1
2
3
4

Figure 5.16: Median absolute error in the service time predictions for the all-in-one
topology.

0 1 2 3 4
Source experiment step

50

0

50

100

150

200

250

300

M
ed

ia
n 

er
ro

r (
%

)

Proposed Step
0
1
2
3
4

Figure 5.17: Median relative error in the service time predictions for the all-in-one topology.



5.5. SERVICE TIMES 133

This effect is confirmed in figure 5.17, which shows the median relative error (as opposed
to the absolute error shown in the earlier charts) for the all-in-one topology, which will be
negative for under-predictions and positive for over-predictions. This shows that, as the
difference in the level of parallelism of each predicted physical plan compared to the source
physical plan increases, so does the error. It also shows that for “scale up” predictions
(using a low parallelism physical plan to predict a high parallelism one) the service times
are under-predicted and vice versa. This pattern is also present in the other test topologies.

Regarding the effect of the service time prediction errors, on the prediction of the executor
sojourn times, we make two observations: firstly, that positive errors in the predicted
service time (bP ) imply that the predicted service rates (µP = 1

bP
) are smaller than the

actual service rates (µA). Using an M/M/1 queueing system as an example (see appendix
A for more details), the sojourn time (W ) across the queuing system is given by:

W = 1
µ− λ

(5.2)

Therefore, when the predicted service rates are smaller, the predicted sojourn times (WP )
will be longer than the actual sojourn times (WA).

Secondly, the effect on the sojourn times also varies with the difference between the service
and arrival rates. When the difference is very large and the service rate is much greater
than the arrival rate, the effect of service rate errors on the predicted sojourn times is
reduced. Typically, in the experiments listed in this chapter, the service rate is several
orders of magnitude larger than the arrival rate.

Figure 5.18 shows a comparison of the results of the queue simulator (described in
section B.3) with differing levels of service time errors. In this comparison the arrival rate
was fixed at two different levels (0.1 & 1.0) and various levels of error were applied to
the actual service time of 0.1, which equates to an actual service rate of 10. The latency
error was calculated against the simulator results using the actual arrival and service rates.
For the 0.1 arrival rate, figure 5.18 shows that the service time error of 300%, shown in
figure 5.17 for the case when experiment step 4 is used as the metrics source, leads to
sojourn time errors of 50%. However, most of the cases shown in figure 5.17 have service
time errors between -50 and 100% and this leads to sojourn time errors of between -10%
and +20%.

The 1.0 arrival rate line, shown in figure 5.18, illustrates how the service time error can
have more of a pronounced effect (steeper curve) when the actual arrival rate is closer
to the actual service rate (10), in this case an order of magnitude closer. As mentioned
previously, the experiments in this chapter have arrival rates several orders of magnitude



134 CHAPTER 5. EVALUATION

100 50 0 50 100 150 200 250 300
Error in service time prediction (%)

20

0

20

40

60

80

Er
ro

r i
n 

so
jo

ur
n 

tim
e 

pr
ed

ic
tio

n 
(%

)

Arrival rate
1.0
0.1

Figure 5.18: Effect of errors in the service time on the queue soujour time simulation with
an arrival rate of 0.1 and 1.0.



5.6. TUPLE INPUT LIST SIZE 135

lower than the service rates and so the service time error effect curve is likely to be
shallower than those shown in figure 5.18.

The results discussed in this section imply that the modelling system may be less accurate
in scale down situations where the service time is more likely to be over-estimated and
also in situations where the actual arrival and service rates are close. These results lead to
the requirement that thread pausing due to high co-location of executors in the worker
processes needs to be carefully accounted for in the service time predictions. Such a
requirement is discussed as future work in section 6.3.4.

5.6 Tuple Input List Size

Section 4.12 describes the approach to modelling the number of tuples expected in each
list arriving into the executor receive queue (ERQ) (see section 2.7 for more details). This
involves predicting several additional parameters related to the flow of tuples through the
executors (see section 2.8.1) including the arrival rate of individual tuples at the executor
send queue (ESQ) and the number of tuples in each map sent to the worker process transfer
queue (WPTQ). In order to validate the predictions of these values it was necessary to
modify the version of Apache Storm running in the experimental cluster. By default,
Apache Storm does not provide metrics on the number of tuples in the objects arriving at
each Disruptor queue, of course if it did there would be no need to predict the value in the
first place. The source code for Apache Storm version 1.2.2 was altered4 to add a metric to
the standard Disruptor queue which provides an average tuples per object reported every
metric bucket period (which is configurable and is 10 seconds by default). This metric is
reported to the custom metrics consumer along with the other default metrics.

Figure 5.19 shows the validation results for the input list size predictions using the all-in-
one topology (see experiment All-In-One-1 in section E). This shows that the accuracy
achieved for scale up scenarios is much higher than for scale down. This is likely due to
the fact that the input rate for these experiments is fixed and therefore, as the parallelism
of each component is increased, the input list size tends towards one and as the prediction
has a floor of one then the true value and prediction will converge as the arrival rate into
each executor reduces.

To avoid a situation where the input list sizes are likely to be one, or close to one, a second
experiment was performed with the Disruptor queue flush interval (δ – see section 2.7) set
to a much longer (1000 ms) period than the default 1 ms. As the Disruptor queue batch
size remained at the default of 100 tuples this ensured that, with the total topology input
rate of 16 tuples per second, the input lists would contain multiple tuples. The results of

4The altered version of Storm can be seen at: https://github.com/tomncooper/storm/tree/batch-size



136 CHAPTER 5. EVALUATION

0 1 2 3 4
Source experiment step

0

5

10

15

20

25

30

35

40

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

proposed_step
0
1
2
3
4

Figure 5.19: Comparison of the mean absolute error in the prediction of the input list size
into each ERQ for the all-in-one topology.

this second experiment are shown in figure 5.20.

From these results, we can see a similar pattern to that seen in figure 5.19. The scale up
scenarios have higher accuracies, and the higher the parallelism in the proposed step the
lower the overall error. This suggests that the convergence to one tuple per input list is
not driving this lower error, for the high parallelism physical plans, as this experiment had
multiple tuples per input list. These results show that there must be additional processes
in the tuple flow which are affecting the list sizes arriving at the ERQs.

However, for most scenarios the error is less than 30% and for most low to medium
throughput situations (e.g. less than 1000 tuples per second per executor, using the default
settings) the input tuple list will contain only a single tuple. However, for high throughput
situations the current modelling approach suffers from larger prediction errors. This
provides motivation for adding the input list size measurement to the default Disruptor
queue metrics, in order to remove the need to estimate these values. This issue is discussed
further in section 6.3.1.

5.7 End-to-end Latency

The final stage of validation involves performing the full end-to-end latency calculation
described in section 4.13. This includes predicting all the variables described in the sections
above and analysing the predictions for each path through the proposed topology physical
plan.



5.7. END-TO-END LATENCY 137

0 1 2 3 4
Source experiment step

0

10

20

30

40

50

60

70

80

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

proposed_step
0
1
2
3
4

Figure 5.20: Comparison of the the mean absolute error in the prediction of the input list
size into each ERQ with a flush interval of 1 second.

5.7.1 Ground truth latency

As discussed in section 2.13.2, the complete latency is highly susceptible to skew from
straggler tuples. The predictions, made by the full end-to-end latency calculations, are an
expected average end-to-end latency through each path in the topology tuple flow plan.
This makes it difficult to validate these predictions against the measured complete latency
values reported by Apache Storm, as the complete latency will be skewed heavily towards
the worst case end-to-end latency for a given set of paths from a spout.

As discussed in section 4.13.5, the end-to-end latency predictions can be adapted to better
match the complete latency by looking at the longest path through the tuple flow plan.
However, this will not account for stragglers skewing the measured complete latency values.
Therefore, to allow better validation, a separate latency measure is required. As discussed
in section 5.3, the test system used for this validation includes a timestamp of when each
message is first pulled off the message broker in the topology’s spout executors and this
timestamp is passed along in every tuple produced by the components of each test topology.
The final sink component in the topology will then compare the entry timestamp to the
current time and report the difference as the latency of the path that particular tuple
took through the topology. This is then sent to the message broker along with a string
recording the component and task instances the tuple passed through.

This ground truth latency can only be trusted where both the spout and sink tasks are
within executors on the same worker node. Also, the elements which contribute to this
ground truth latency differ from those of the complete latency. The ground truth latency



138 CHAPTER 5. EVALUATION

begins within the user logic thread (ULT) of each spout and therefore this latency will
include the queueing delay at the spout’s executor send thread (EST). This is unlike the
complete latency which only begins when the Acker component receives the ack_init tuple
from the spout. The ground truth latency ends in the sink executor’s ULT and so will not
contain that executor’s EST delay or any delay from transfer and processing at the Acker.

The modelling process predicts values for each of the delays in a physical path through
the tuple flow plan (executor ERQ & ULT, EST, worker process send thread (WPST)
and remote transfer) separately and sums them appropriately for each path. Therefore,
predicting the ground truth latency is simply a matter of assembling these elements in
the appropriate configuration. In this way both the complete latency and ground truth
latencies can be calculated as part of the same prediction.

5.7.2 Validation process

For each pair of source and proposed physical plans (from each step of the experiment), a
ground truth latency and complete latency prediction is made for every possible physical
path through the topology’s tuple flow plan.

Complete latency

As described in section 2.13.2, the complete latency is highly susceptible to straggler tuples
skewing the complete latency reported for a given metric bucket period. This can lead
to long tails in the measured complete latency distribution and make using the mean of
that distribution to represent the actual complete latency value unrepresentative. For this
reason, the median value of the measured complete latency distribution is taken as the
actual complete latency for each source spout used in the validation.

The actual complete latency value, for a given source spout, is then compared to the 90th
percentile of the predicted complete latencies for each of the source spouts. As described
in section 2.13.2, the complete latency is a measure of the worst case latency and so will
be dominated by the longest predicted path latencies. Using the maximum path latency
may be most appropriate, however this could be susceptible to outliers in the predicted
complete latency values and so the 90th percentile is used to exclude the most extreme
values.

Ground truth latency

For the ground truth latency, the path string recorded in each tuple as it passes through
the test topology is used to filter out any paths that do not begin and end on the same
worker node. These paths are then further analysed to remove outliers. Latency measures
in computer networks are particularly susceptible to straggler packets causing large outlier



5.7. END-TO-END LATENCY 139

values in the data. Figure 5.21 shows an example distribution of raw ground truth
latency measurements from the Multiplier test topology. In this particular example the
vast majority of measurements are of the order of tens of milliseconds. However, the
distribution has a long tail (up to 5 seconds or more) which could be due to a variety of
reasons, but is most likely caused by dropped packets during sending across the network
and/or failed tuples that are resent. The latency of resent tuples will not contribute to
the complete latency, as failed tuples are not recorded for that metric. However, for the
ground truth latency, all tuple end-to-end latencies through the topology are recorded,
whether they have been resent at the network level or failed and replayed at the topology
level.

Figure 5.21: An example of the distribution of ground truth latency measurements for a
single experiment step of the multiplier test topology.

To account for these outlier measurements we use the complete latency as an upper bound.
As discussed in section 2.13.2, the complete latency can be considered to be a measure of
the worst case latency through the topology tuple flow plan. As such, any ground truth
latency measurement that is longer than the complete latency is likely to be an outlier.
Figure 5.22 shows the distribution from figure 5.21 with any measurement above the 90th
percentile of the measured complete latency removed. This shows a normally distributed
set of latency measurements. Not all ground truth latency distributions will follow this
pattern. Again, as discussed in section 2.13.2, the complete latency is prone to influence
by stragglers and so using it as an upper limit does not always eliminate the long tail of
the distribution. In these cases further cleaning of the ground truth latency measurements
may be required; additional details of where this occurs are given in the discussions below.



140 CHAPTER 5. EVALUATION

Figure 5.22: An example distribution from figure 5.21 with any measurement above the
average complete latency removed.

Once the cleaned ground truth latency distribution is obtained, this is used as the actual
measured ground truth latency for the proposed physical plan. The predicted ground
truth latencies for each physical path in the proposed tuple flow plan are then filtered so
that any path that was excluded from the measured values (as they did not start and
end on the same worker node) is also excluded from the predicted values. Then each
predicted path is given a weight, based on the sum of routing probabilities along that
path. This weight is then divided by the sum of all weights in the filtered predicted paths
to gain a relative weight for that path. This relative weight is then multiplied by the
predicted ground truth latency and these values are summed across all paths to obtain
a weighted average predicted ground truth latency. This weighted average allows the
uneven routing of tuples, due to fields grouped connections, to be taken into account in
the average predicted ground truth latency value.

5.7.3 Results

All of the test topologies listed in table 5.1 were tested with the five experimental steps
(each topology configuration using double the parallelism for each component as the one
before). The full experimental configuration used with each of these test topologies can be
seen in Appendix E.

Fields-to-fields topology



5.7. END-TO-END LATENCY 141

1 2 3 4
Experiment Step

0

10

20

30

40

50

La
te

nc
y 

(m
s)

Figure 5.23: The measured ground truth latency for the fields-to-fields test topology using
two worker nodes with two worker processes each.

Ground truth latency The fields-to-fields topology tests the routing probability predic-
tion methods described in section 4.5. Figure 5.23 shows violin plots of the distributions of
measured ground truth latencies for each experimental step, after being cleaned according
to the method described in section 5.7.2. The shape of the distributions is shown5 along
with the median as a white dot and the inter-quartile range shown as a thick black line on
the central axis of each plot. Step 0, as it only has one replica of each component, has
only a single path that does not have a source and sink component on the same worker
node and so has been excluded.

Figure 5.23 shows that the ground truth latency does not alter significantly from steps
1 to 3. However, step 4 shows a more diffuse distribution with a higher variance and
median ground truth latency. The arrival rate for all experiment steps was fixed and so
this increase in variance and overall end-to-end latency was not due to higher workload.
Indeed, for step 4 there were 16 copies of each component and so the incoming load on each
executor would be low compared to the other steps. However, this high level of replication
is likely the reason for the increase in measured latency. The fields-to-fields topology has
four components and during step 4 has 16 copies of each, if you include the one Acker
and metrics consumer executor per worker process, this results in 72 executors in total
for the step. The initial fields-to-fields experiment has only two worker nodes with two
worker processes each, which results in 18 executors per worker process. The worker nodes
were virtual machines (VMs) with only two central processing unit (CPU) cores and so

5The distribution is a mirror image along the vertical axis



142 CHAPTER 5. EVALUATION

this implies a high level of process sharing between the executors. This means that many
of the executors would be paused during process sharing with the other threads of the
worker process’s Java Virtual Machine (JVM), extending the processing times. This will
also result in inaccurate service time estimations when trying to estimate the performance
for step 4, or when using step four as a source of metrics.

0 1 2 3 4
Source Experiment Step

40

20

0

20

40

Er
ro

r (
%

)

Proposed Step
1
2
3
4

Figure 5.24: The relative error between the predicted weighted average ground truth
latency and the average measured ground truth latency, using two worker nodes with two
worker processes each.

Figure 5.24 shows the relative error (negative for an under-prediction and positive for an
over-prediction) between the predicted weighted average ground truth latency and the
measured ground truth latency for each proposed physical plan, using the metrics from
each source physical plan. This shows that, when predicting step 4 or using it as a metrics
source, the estimates of the ground truth latency can suffer errors of up to ±40%.

If we look at the error in the service time predictions, shown in figure 5.25, we can clearly
see the effect of the high co-location of executors. Using step 4 as a metrics source leads
to large over-estimations in the service time predictions. As discussed previously, this is
most likely due to the thread pausing extending the measured service time used as the
source data for predicting the service time of each executor.

To better gauge the accuracy of the modelling approach we can remove the parameter
prediction and simply use the measured values from an experiment step to predict the
performance of that step. Figure 5.26 shows the error between the predicted weighted
average and the average measured ground truth latency for each experiment step using
only measured values. This shows errors of 10% or lower, indicating that the modelling



5.7. END-TO-END LATENCY 143

0 1 2 3 4
Source experiment step

0

200

400

600

800

M
ed

ia
n 

ab
so

lu
te

 e
rro

r (
%

)

Proposed Step
0
1
2
3
4

Figure 5.25: The error in the service time predictions for the fields-to-fields topology, using
two worker nodes with two worker processes each.

1 2 3 4
Experiment Step

40

20

0

20

40

-50

-30

-10

10

30

50

Er
ro

r (
%

)

Figure 5.26: The relative error between the predicted weighted average ground truth
latency (using measured parameters) and the average measured ground truth latency.



144 CHAPTER 5. EVALUATION

approach is valid but also how input metrics can significantly affect the predictions.

2 3 4
Experiment Step

0

10

20

30

40

50
La

te
nc

y 
(m

s)

Figure 5.27: The measured ground truth latency for the fields-to-fields test topology using
four worker nodes with two worker processes each.

For comparison, a second experiment using the fields-to-fields topology was performed
but this time with four worker nodes with two worker processes each (eight in total for
the topology). Figure 5.27 shows the distribution of measured ground truth latencies for
this second fields-to-fields experiment. In this case neither step zero nor step one had any
paths that began and ended on the same worker node, something made more likely the
more worker nodes are used. Figure 5.27 shows that with more worker nodes and therefore
lower levels of executor co-location, step 4’s measured ground truth latency distribution
more closely matches that of the other experimental steps.

Figure 5.28 shows the results of using the four worker node setup in the predictions. With
lower co-location the prediction error is 20% or lower with most steps having errors of 10%
or less. This shows what a significant effect the thread pausing, caused by high co-location,
can have on the modelling results. The thread pausing typically affects all aspects of
a tuple’s end-to-end latency, when being served in an executor’s ULT as well as when
waiting in the various queues of the Apache Storm system.

These results show that the modelling system can produce good prediction for consecutive
fields grouped connections, something many previous systems have not even been capable
of modelling (see chapter 3). However, the effect of high levels of co-location on the
measured latency results have implications for how this modelling system can be applied.
Future work should look at modelling the effect of high co-location on the executors in
order to provide accurate predictions for densely packed physical plans, see section 6.3.4



5.7. END-TO-END LATENCY 145

0 1 2 3 4
Source Experiment Step

40

30

20

10

0

10

20

30

40

Er
ro

r (
%

)

Proposed Step
2
3
4

Figure 5.28: The relative error between the predicted weighted average ground truth
latency and the average measured ground truth latency, using four worker nodes with two
worker processes each.



146 CHAPTER 5. EVALUATION

for further discussion.

0 1 2 3 4
Source experiment step

0

10

20

30

40

50

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed Step
0
1
2
3
4

Figure 5.29: The percentage mean absolute error in the complete latency predictions for
the fields-to-fields test topology, using two worker nodes with two worker processes each.

Complete latency The two worker node and four worker node results for the complete
latency predictions are shown in figure 5.29 and figure 5.30 respectively. Comparing these
two results sets shows that, as with the ground truth latency predictions, the results are
less accurate for the two worker node experiment configuration. Again, this is likely a
result of high co-location of the executors. It is worth noting that in the four worker node
case, the complete latency errors are higher for the lower experimental steps than in the
two worker node case. This is likely due to the higher level of remote connections. As
the complete latency is highly susceptible to straggler tuples, slow network connections
or resent packets will increase the measured complete latency. As the network transfer
latency modelling is only based on a median round trip latency measurement between
the worker nodes, the modelling will not account for these effects. This suggests that
for more accurate complete latency modelling a different summary statistic, such as a
higher percentile (75th or 90th), would be a more appropriate measure to use to model
the expected remote transfer latency.

These results show that, provided high levels of executor co-location are avoided, the
complete latency can be predicted with errors of less than 30% and in most cases less than
15% errors for consecutive fields grouped components with a one-to-one tuple ratio.

Multiplier topology



5.7. END-TO-END LATENCY 147

0 1 2 3 4
Source experiment step

0

5

10

15

20

25

30

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed Step
0
1
2
3
4

Figure 5.30: The percentage mean absolute error in the complete latency predictions for
the fields-to-fields test topology, using four worker nodes with two worker processes each.

1 2 3 4
Experiment Step

0

10

20

30

40

La
te

nc
y 

(m
s)

Figure 5.31: The measured ground truth latency for the multiplier test topology.



148 CHAPTER 5. EVALUATION

Ground truth latency Figure 5.31 shows the distribution of measured ground truth
latencies for the multiplier test topology shown in figure 5.6. As with all the experiments
described in this section, step 0 had only a single path and this did not start and stop on
the same worker node and therefore is excluded. The multiplier test topology is formed of
three components, where the middle component emits multiple tuples for every received
tuple and the multiplier amount is randomly selected from a normal distribution with
mean 10 and standard deviation of 1. The measured ground truth latency distribution
of step 1 shows a different pattern to the other steps. This is likely due to this step only
having two copies of each component. The 16 ts−1 input rate would then equate to an
average of 80 ts−1 into the replicas of the final component. As the final component is
performing the send operation to the Kafka message broker it has a relatively long service
time, and so the high arrival rate causes increased queueing delays at that component.
The Kafka client library implements its own internal batching and so this second peak
may equate to tuples waiting within that batch before being processed. As the input rate
into the topology is fixed, scaling up the components results in lower individual arrival
rates at each of the replicas of the final component. As a result, the distributions of the
experimental steps with higher parallelism more closely resemble those of the fields-to-fields
tests topology shown in figure 5.27.

0 1 2 3 4
Source Experiment Step

40

30

20

10

0

Er
ro

r (
%

)

Proposed Step
1
2
3
4

Figure 5.32: The relative error between the predicted weighted average and average
measured ground truth latency for the multiplier test topology.

Figure 5.32 shows the relative error between the predicted weighted average and the
average measured ground truth latency for the multiplier topology. This shows that the
error for the experimental steps with low parallelism, with higher arrival rates into the
final sink component, is greater compared to the steps with higher parallelism with lower



5.7. END-TO-END LATENCY 149

arrival rates into the final component. The error is predominately negative, indicating an
under-prediction of the ground truth latency. As the error is larger for the experimental
steps with lower parallelism, this is unlikely to be an issue with executor co-location and
indicates that the modelling process is not capturing additional latency as a result of
higher arrival rates. This effect could be a result of the Kafka client library used in the
final component as it uses its own queue and batch send implementations, which may
interrupt the executor processing under high load in a way that is not covered by the
modelling process. Unfortunately, as the Kafka client is integral to the validation process,
gauging performance without it being present was not possible.

0 1 2 3 4
Source experiment step

0

10

20

30

40

50

60

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed Step
0
1
2
3
4

Figure 5.33: The percentage mean absolute error in the complete latency predictions for
the multiplier test topology.

Complete latency Figure 5.33 shows the mean absolute error between the predicted
complete latency (90th percentile) and the measured median complete latency. This shows
that, whilst the errors for the lower experimental steps with low parallelism are 20% or
less, the error in the prediction rises significantly for the experimental steps with higher
parallelism. The reason for this can be seen by looking at figure 5.34, which compares
the distribution of the measured ground truth latencies to that of the measured complete
latencies from each experimental step. This shows that for steps 3 and 4 the complete
latency is significantly higher than the ground truth latency. We would expect the complete
latency to be slightly longer than the ground truth latency as it includes the additional
delay at the Acker component. However, these distributions have median values at or
above the 3rd quartile of the measured ground truth latency. Again this supports the
notion that the complete latency is a measure of the worst case latency for a topology.



150 CHAPTER 5. EVALUATION

1 GTL 1 CL 2 GTL 2 CL 3 GTL 3 CL 4 GTL 4 CL
Experiment Step

0

5

10

15

20

25

30

35

40

La
te

nc
y 

(m
s)

Figure 5.34: Comparison of the measured ground truth and complete latencies for each
experiment step of the multiplier test topology.

As the number of component replicas within a physical plan increases, the number of
network connections also increases. This in turn increases the chance of packets hitting a
slow connection and skewing the average measured complete latency. It is also possible
that co-location effects could further extend the measured complete latency compared
to the predicted. As the complete latency prediction is based on average performance
measures along each path, the further the measured complete latency moves from the
average ground truth latency the worse the estimations for the complete latency will
become. This suggests that complete latency predictions should be based on worst case
metrics throughout the modelling process, 90th percentile service times and arrival rates
for example, in order to better approximate the true behaviour of the complete latency.

Another interesting point to observe from figure 5.34 is that for step 1 the measured
complete latency is lower than the ground truth latency. This is most likely due to the
tuples arriving at the final component being acknowledged (stopping the complete latency
clock) and the tuple processing being delayed in the Kafka client library due to the internal
batching this library uses. In later steps, as described above, the arrival rate into the final
Kafka sending component is reduced and so the batching effect is lessened.

Windowing topology

Ground truth latency Figure 5.35 shows the measured ground truth latency for the
windowing test topology shown in figure 5.7. The distributions show that the median



5.7. END-TO-END LATENCY 151

1 2 3 4
Experiment Step

0

500

1000

1500

2000

2500

La
te

nc
y 

(m
s)

Figure 5.35: The measured ground truth latency for the windowing test topology.

ground truth latency (indicated by the white dot) increases with the parallelism of the
experimental steps, as does the variance of the distributions. This increase is due to the
fixed total arrival rate into the topology (16 ts−1) and the fixed window size of 10 tuples.
As the windowing component is scaled out, the fixed total arrival rate is divided between an
increasing number of executors and therefore the arrival rate into the individual windowing
executors drops. As the window is of fixed size and the arrival rate is dropping, it takes
longer to complete each window. The increased variance is due to tuples falling either side
of window boundaries and either being processed quickly or having to wait. With more
copies of the windowing component there is more variance in the window boundaries (at
each replica of the windowing component) and so more variation in the time tuples have
to wait.

Figure 5.36 shows the relative error between the predicted weighted and the measured
average ground truth latency for the windowing test topology. This shows consistent
results, of 12% error or less, for all experimental steps with a slight increase in error
when experimental steps with higher parallelism are used as metrics sources. For all
steps the model is overestimating the latency, suggesting that there may be mechanisms
within Storm’s windowing implementation that speed up the processing compared to the
assumptions of the model. However, these could also be errors due to averaging the source
metrics and/or errors from other parameter estimations (service time, arrival rate, etc.).

Compared to the multiplier topology results shown in figure 5.32, the errors for the
windowing topology are generally much lower. The arrival rate into the final component
of the windowing topology (which sends the messages to the Kafka message broker) is



152 CHAPTER 5. EVALUATION

0 1 2 3 4
Source Experiment Step

0

2

4

6

8

10

12

Er
ro

r (
%

)

Proposed Step
1
2
3
4

Figure 5.36: The relative error between the predicted weighted average and average
measured ground truth latency for the windowing test topology.

significantly (around ten times) lower than the multiplier topology. As this seems to
result in much better predictions, this does lend some weight to the theory that the
under-prediction in the multiplier topology experiment may be due to the effects of high
arrival rates into the Kafka sending component, resulting in additional delays that are not
currently being captured by the modelling process.

Complete latency The complete latency results for the windowing test topology are
shown in figure 5.37. These show consistent 60-70% errors regardless of the source or
predicted physical plan. Whilst these are shown as absolute errors, as they are based on
a mean of the complete latency predictions from all source spouts, they are in fact all
under-predictions. The reason for this can be seen in figure 5.38, which shows the difference
between the measured ground truth and complete latencies for each step of the windowing
topology experiment. These show the complete latency distributions to be significantly
higher than the measured ground truth latency in each case, much higher than would
be expected by the additional delay in transfer and queuing at the Acker components.
As discussed previously, the additional latency may be due to network delays skewing
the complete latency average measurements. However, as the errors appear consistent
across experiment steps, regardless of the number of remote connections, this suggests
that network delays are not the main cause. Apache Storm’s windowing API may be
another source of error. The API will automatically acknowledge all tuples within an
input window after that window has completed. The trigger for completing depends on the
type of windows being used. For count based tumbling windows (like those used in this



5.7. END-TO-END LATENCY 153

0 1 2 3 4
Source experiment step

0

10

20

30

40

50

60

70

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed Step
0
1
2
3
4

Figure 5.37: The percentage mean absolute error in the complete latency predictions for
the windowing test topology.

1 GTL 1 CL 2 GTL 2 CL 3 GTL 3 CL 4 GTL 4 CL
Experiment Step

0

1000

2000

3000

4000

La
te

nc
y 

(m
s)

Figure 5.38: Comparison of the measured ground truth and complete latencies for each
experiment step of the windowing test topology.



154 CHAPTER 5. EVALUATION

experiment) this completion should be almost instantaneous, however if this completion
is delayed this would not be included in the model. As the error is consistent across
experimental steps and the window size is fixed, this does suggest that some process within
the windowing implementation, that is not captured in the modelling process, may be the
reason for the error.

All-in-one topology

1 2 3 4
Experiment Step

0

200

400

600

800

1000

La
te

nc
y 

(m
s)

Figure 5.39: The measured ground truth latency for the all-in-one test topology.

Ground truth latency Figure 5.39 shows the measured ground truth latency for the
all-in-one test topology shown in figure 5.8. For this experiment, the multiplier component
multiplied the number of input tuples by a random integer drawn from a normal distribution
with mean 20 and standard deviation of 1.0. The windowing component had a tumbling
count based window of size 10. The final two components had fields grouped connections.
Like the windowing topology measured ground truth latency distributions shown in
figure 5.35, the average latency and the variance in the distribution rise with increasing
parallelism of the experimental step’s physical plan. As in the windowing topology case,
this can be attributed to the fixed arrival rate across experimental steps leading to lower
individual arrival rates into the executors of the windowing component for experimental
steps with higher parallelism. These lower arrival rates and the fixed window size lead to



5.7. END-TO-END LATENCY 155

longer periods waiting for windows to be filled.

The distributions shown in figure 5.39 exhibit a clear multi-modal pattern and these
separate latency peaks are an interesting feature. The length of the inter-peak intervals in
each distribution remains constant, approximately 200ms, regardless of the parallelism
of the physical plan. The only common factors in the configuration of the experimental
steps for this topology are the multiplier component settings and the tumbling window
size. Indeed, these inter-peak periods seem to correlate with the process latency reported
by Apache Storm for each windowing executor. As discussed in section 4.13.1, the process
latency reported by Storm for windowing executors equates roughly to the time taken
for a window of tuples to be fully processed. These peaks, therefore, seem to equate to
discrete window processing times.

0 1 2 3 4
Source Experiment Step

4

2

0

2

4

6

8

10

12

Er
ro

r (
%

)

Proposed Step
1
2
3
4

Figure 5.40: The relative error between the predicted weighted average and average
measured ground truth latency for the all-in-one test topology.

Figure 5.40 shows the relative error between the predicted weighted and the measured
average ground truth latency for the all-in-one test topology. These results show prediction
errors of typically 10% or less. In this test topology the arrival rate into the final Kafka
sending component is much lower than in the multiplier topology case and has much better
accuracy. This gives further weight to the theory that additional processes within the
Kafka Client API, when under high load such as in the multiplier topology experiment,
are not being captured by the modelling process.

Complete latency Figure 5.41 shows the absolute errors between the predicted and
the measured complete latency for the all-in-one topology. This shows significant errors
of approximately 80% or higher. As with the windowing topology experiment, these



156 CHAPTER 5. EVALUATION

0 1 2 3 4
Source experiment step

0

20

40

60

80

100
M

ea
n 

ab
so

lu
te

 e
rro

r (
%

)

Proposed Step
0
1
2
3
4

Figure 5.41: The percentage mean absolute error in the complete latency predictions for
the all-in-one test topology.

1 GTL 1 CL 2 GTL 2 CL 3 GTL 3 CL 4 GTL 4 CL
Experiment Step

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y 

(m
s)

Figure 5.42: Comparison of the measured ground truth and complete latencies for each
experiment step of the all-in-one test topology.



5.7. END-TO-END LATENCY 157

estimations are all under-predictions. The comparison, shown in figure 5.42, between
the measured ground truth and complete latency distributions, shows the latter being
significantly higher. The difference between them is even more pronounced than in
the windowing topology case. This can be explained by the presence of a multiplying
component being followed by a windowing component in the all-in-one topology. All new
tuples created in the multiplier component are anchored to the original input tuple; these
multiple child tuples will then be sent to the windowing component. If one of these child
tuples arrives into a later window than the others and therefore waits for one or more
additional window periods to pass, this will extend the completion of the tuple tree for
the original input tuple. This kind of delay is not captured in the modelling process and
likely explains some of the prediction error for the complete latency.

Join-split topology

1 2 3 4
Experiment Step

0

250

500

750

1000

1250

1500

La
te

nc
y 

(m
s)

Figure 5.43: The measured ground truth latency for the join-split test topology.

Ground truth latency Figure 5.43 shows the measured ground truth latency for the
join-split test topology shown in figure 5.9. This distribution shows a similar pattern
to that of the all-in-one topology shown in figure 5.39. This is to be expected as both
these topologies contain a multiplying component followed by a windowing component (in
this case the stream joining bolt). Again the inter-peak period is the same, regardless of
the parallelism of the experimental step’s physical plan, suggesting this is linked to the
common tumbling window count size. As the processing is identical and all windows have
the same number of tuples, the window processing time for each step will be similar.

Figure 5.44 shows the relative error between the predicted weighted and the measured



158 CHAPTER 5. EVALUATION

0 1 2 3 4
Source Experiment Step

25

20

15

10

5

0

5

Er
ro

r (
%

)

Proposed Step
1
2
3
4

Figure 5.44: The relative error between the predicted weighted average and average
measured ground truth latency for the join-split test topology.

average ground truth latency for the join-split test topology. These results show good
accuracy, with errors of 7% or lower for predicting steps 2 to 4 using all other steps as
sources. Predictions of the performance of step 1, however, show an under-prediction of
approximately 25%. This mirrors the level of under-prediction seen in the multiplier test
topology and may be similarly explained by high arrival rates into the sending components.
In the case of the join-split test topology, the overall input rate was 25 ts−1. The topology
(shown in figure 5.9) included an approximately 10 times multiplier and a pass through
component before the joining component. In step 1 this meant that the combined arrival
rate at the joining component was over 275 ts−1. The joining component windows that
stream into batches of 20 tuples and sends two tuples to each sending component (one
from each input stream to ensure we have enough paths samples). This means the arrival
rate into the executors of the final Kafka sending component was high compared to the
other experiments described in this chapter, and close to those of the experimental steps
with low parallelism in the multiplier topology test. As the input rate was fixed, the
doubling of parallelism for the next step halved the arrival rate into the joining component
and the under-prediction dropped to approximately 5%. These results suggest that there
are additional sources of latency occurring in either the Windowing API or Kafka Client
library, when subjected to higher arrival rates.

Complete latency Figure 5.45 shows the absolute errors between the predicted complete
latency and the measured for the join-split topology. Similar to the all-in-one topology
complete latency results, shown in figure 5.41, this shows significant errors of approximately



5.7. END-TO-END LATENCY 159

0 1 2 3 4
Source experiment step

0

20

40

60

80

100

M
ea

n 
ab

so
lu

te
 e

rro
r (

%
)

Proposed Step
0
1
2
3
4

Figure 5.45: The percentage mean absolute error in the complete latency predictions for
the join-split test topology.

1 GTL 1 CL 2 GTL 2 CL 3 GTL 3 CL 4 GTL 4 CL
Experiment Step

0

500

1000

1500

2000

2500

3000

3500

La
te

nc
y 

(m
s)

Figure 5.46: Comparison of the measured ground truth and complete latencies for each
experiment step of the all-in-one test topology.



160 CHAPTER 5. EVALUATION

70% or higher. As with the windowing and all-in-one topologies, these estimations are all
under-predictions. The comparison shown in figure 5.46, between the measured ground
truth latency and complete latency distribution, shows a similar situation to the all-in-one
topology and, as the join-split topology has a similar multiplier component feeding into a
windowing component, the discussion above for that result is applicable here.

5.8 Summary

5.8.1 Arrival rate

The arrival rate prediction methods, described in section 4.8, were evaluated in three
sections: stream routing probabilities, I/O ratio predictions and the arrival rate predictions
themselves:

Stream routing probabilities The stream routing predictions show good results with
errors of typically less than 10% even when consecutive fields grouped connections
where used.

I/O ratios The I/O ratio predictions show low errors (<1%) for linear topologies where
components have a single input and output stream and also for multi-stream compo-
nents where the routing behaviour is simplistic (<6%). However, for more complex
routing behaviour the error can be much higher (30-40%) where the source physical
plan lacks sufficient variety to predict the routing for more complex physical plans.
Conversely, more complex physical plans can predict the complex routing behaviour
of less complex physical plans with a lower error (<15%).

Arrival rate The arrival rate predictions, tested against the fields-to-fields and join-split
(with simple routing) show low errors of less than 2.5%.

The results of the evaluation show that the prediction methods are able to predict relatively
complex routing patterns as the result of significant changes to a topology’s physical plan.
There are some limitations of the I/O ratio predictions for complex relationships between
multiple input and output streams. These may be better modelled using non-linear
techniques.

5.8.2 Service time

The service time predictions were shown to produce errors between 20 and 300% depending
on the parallelism of the source physical plan used. The results showed that high co-
location of executors within worker processes can lead to thread pausing which extends the
measured service time. This leads to over-estimations of the executor service times when
predicting the performance of a scale down proposal and under-estimating the service time



5.8. SUMMARY 161

for scale up proposals. In order to improve the service time predictions a more advanced
modelling method will be required to account for the effect of changing co-location levels.
The effect of the service time errors is most significant when the predicted service time
leads to a service rate close to the arrival rate, and so is more of an issue for scale down
proposals than scale up.

5.8.3 Tuple input list size

The test version of Apache Storm was modified to record the average number of tuples
within the objects arriving at each Disruptor queue. This allowed the predicted tuple
input list size to be validated and showed that for most situations the prediction error was
below 30%. However, higher errors were seen in scale down situations. Due to the fixed
overall arrival rate into the test topologies, scale down proposed physical plans (with lower
component parallelism) meant higher individual executor arrival rates. It was suggested
that the higher errors could be due to batching within the network library that occurs
under higher load. A better approach to reducing prediction error would be to measure
the input batch size in the default metrics and use this to produce prediction models for
proposed physical plans.

5.8.4 End-to-end latency

The evaluation of the end-to-end latency predictions focused on two metrics: the ground
truth latency and the complete latency. The ground truth latency is measured by the
evaluation test system and is the time from when a message was received in the test
topology spouts to when it is processed in the final sink component. The complete latency
is a metric provided by Apache Storm and is a measure of the time from when a spout
tuple is first acknowledged by the Acker component to when all child tuples of that source
tuple are processed. See section 2.13.2 for more details.

Ground truth latency

The results for the ground truth latency predictions show that generally errors are below
20% and typically 10% or lower for the majority of test topologies. The exception to this
is for the multiplier topology with high arrival rates into the final sending component. It
was theorised that the under-prediction (typically around 30%) was due to an unaccounted
for behaviour in the Kafka client library, used in the final sending component, performing
some batching action under higher load which was not present in the other test topology
under lower load.

Generally, using a physical plan with high parallelism and executor co-location resulted in
worse prediction performance. This over-prediction of latency was attributed to thread



162 CHAPTER 5. EVALUATION

pausing artificially extending the service times used as source metrics for the other steps
with lower parallelism. Similarly, when predicting the performance of highly co-located
physical plans using metrics from physical plans with lower co-location, higher errors were
seen.

Complete latency

The results for the complete latency predictions for the various experiments show significant
errors. The linear fields-to-fields topology with one-to-one I/O ratios gives the best accuracy,
however the presence of multiplier or windowing components can cause the complete latency
distributions to be significantly higher than the ground truth latency. The modelling
process is built around predicting the average end-to-end latency of each path within
the topology tuple flow plan. In order to model the complete latency we use the 90th
percentile of these predictions to account for the worst case nature of the complete latency.
The results in this evaluation show this is not sufficient, and that in order to model the
complete latency the reasonable worst case of all parameters (90th percentile service time
and arrival rate, for example) should be used. However, even using this may not be enough
for accurate modelling of the complete latency in cases such as the all-in-one topology
where a multiplying component is followed by a windowing component.

The design of the complete latency metric, as described in section 2.13.2, does allow the
time required to process each input tuple to be gauged. However, it also makes it a poor
measure of overall topology performance and highlights how Apache Storm would benefit
from additional performance measures. This topic is discussed further in section 6.3.1.

5.8.5 Factors undermining prediction accuracy

In the discussion above we identified several key factors affecting the accuracy of our
end-to-end latency predictions:

Non-linear input/output relationship In the calculation of the I/O ratios, the least-
squares regression approach was shown to be sufficient for simple relationships
between input and outputs streams. However, complex, non-linear relationships with
time based windows and complex routing behaviour were not well covered by this
approach.

Co-location effects The multi-threaded nature of Storm’s systems meant that the simple
weighted average approach, used to predict the expected service time of executors in
a proposed physical plan, resulted in poor prediction accuracy (see section 5.5). The
error was larger for scale down situations, going from physical plans with high levels
of executor co-location to proposed physical plans with lower parallelism. The effect
of this service time prediction error was particularly pronounced when the service



5.8. SUMMARY 163

and arrival rates were relatively close.

Input tuple list size The input tuple list size evaluation (see section 5.6) showed that
whilst errors were typically 30% or less, some situations led to errors of 80% or more.
This suggests that the current modelling approach does not include all the processes
in the tuple flow and that it may be better to explicitly measure this value in the
default Storm Disruptor queue metrics.

External libraries In the evaluation of the end-to-end latency predictions, significant
under-prediction of the latency was seen when the executors of the sending component
were subjected to high arrival rates. It was theorised that the missing latency could
be due to additional processes in the Kafka client code, which is known to perform
additional batch sending in separate threads. This was only an issue for the ground
truth latency predictions as this aspect would not be included in the complete latency
tuple flow. However, it does highlight a need to have a way to account for arbitrary
code processes in the tuple flow plan.

5.8.6 Conclusion

Despite the sources of error listed above, for most experimental configurations the error
in the end-to-end latency predictions was 20% or lower and in cases where adjacent
experimental steps were predicted (the difference in parallelism was only double or half
of the source step) these errors were typically 10% or lower. These results are equivalent
to, or better than, the best performing machine learning based approaches discussed
in section 3.2.2, but using a fraction of the required training data of those approaches.
Each of the experimental predictions in this chapter used only 20 minutes of metrics
data, compared to the many hours and multiple topology configurations required by the
machine-learning based approaches.



164 CHAPTER 5. EVALUATION



Chapter 6

Discussion

6.1 Thesis Summary

6.1.1 Chapter 1 — Introduction

Most distributed stream processing systems (DSPSs) provide functionality to scale their
stream processing topologies, the directed graph of logical operators that process a
continuous stream of data packets (tuples). However, automatic scaling is not possible
except in Apache Heron. This forces users of these systems to perform a scaling decision
loop; deploying the initial topology physical plan, waiting for it to stabilise, analysing
the metrics, altering the physical plan to improve performance and repeating this cycle
until the desired performance is reached. The deployment and stabilisation of large
production topologies can take hours, which means the process of finding the correct
topology configuration to meet a given latency service level agreement (SLA) can take
many days to complete. This long scaling period often means that, once a topology
configuration is found to meet the SLA, the scaling process is not repeated to adapt to
new incoming workloads. To speed up this process a way to short circuit the scaling
decision loop is needed. We propose a performance modelling system that is able to assess
the likely performance of a proposed physical plan before it is deployed, so that a viable
plan can be iterated to without paying the time penalty of deployment. Such a system
would not only provide faster convergence towards a viable plan, but would also allow the
effect of future workloads on the current topology physical plan to be assessed and also
for multiple proposed physical plans to be compared in parallel.

6.1.2 Chapter 2 — Apache Storm architecture

One of the most powerful and widely used DSPSs at the start of this research was Apache
Storm. This was chosen (see section 2.1) as the test DSPS for this research project and

165



166 CHAPTER 6. DISCUSSION

its internal structure and operations were studied in detail in chapter 2. The copies of
each topology’s components are distributed (scheduled) onto a series of worker processes
(see section 2.4.3). These host a number of executors (see section 2.4.1) which run the
user defined code (tasks — see section 2.4.2). Each executor had a series of internal
queues (see section 2.7) which have complex operational behaviour. The flow of tuples
through the various elements of the Apache Storm system was mapped (see section 2.8)
and other operations such as guaranteed message processing (see section 2.9), rebalancing
the topology’s physical plan (see section 2.11) and windowing tuples into batches (see
section 2.12) were also explained in detail.

6.1.3 Chapter 3 — Related work

The previous research into DSPS auto-scaling systems was reviewed in chapter 3. Most of
the early research in this area focused on replacing the human user in the scaling decision
loop by triggering some form of optimising physical plan scheduler when a performance
threshold was reached (see section 3.1). Whilst these proposed systems provided a way to
remove human supervision, they did not reduce the time taken to find a valid physical plan
and most of this research was focused on the performance of the scheduler implementations.

More recently, several studies have focused on using some form of performance model
to speed up physical plan selection. Some of these were based on a queuing theory
approach (see section 3.2.1), using various queuing models to approximate the operators
of a stream processing topology. However, none of the studies covered key based routing
or the low-level batch processing logic present in most DSPS implementations. Whilst
these studies did utilise performance modelling, most (Lohrmann et al., 2015; De Matteis
& Mencagli, 2016; Vakilinia et al., 2016) did not evaluate the modelling accuracy by
comparing predicted latencies with measurements from an implemented system. The few
that did (Fu et al., 2015) had errors of 30-90% and did not adequately explain the reasons
for such a large difference.

As well as a queuing theory approach, several studies used machine learning techniques to
train models on metrics from a running topology (see section 3.2.2). These reported much
better accuracy than the queuing theory models, however details on the time taken to
train the models and the amount of training data required are rarely provided. Where they
were, hours of data were needed to predict the performance of simple linear topologies.

6.1.4 Chapter 4 — Modelling approach

The performance modelling approach, laid out in chapter 4, aimed to provide a comprehen-
sive modelling system that was able to predict a wide range of topology designs with only
a small amount of observable data. This obviously ruled out using machine-learning based



6.1. THESIS SUMMARY 167

methods and therefore a queueing theory based approach was used. Analysis of the internal
queues used by the executors in the Apache Storm system showed that most common
queueing theory models would not be applicable. Instead, a discrete-event simulation
(DES) approach was used to simulate the Disruptor queue and executor user logic thread
(ULT) (section 4.2.1). This required several parameters of a proposed physical plan to be
predicted:

• The routing probabilities (section 4.5)
• Input to output (I/O) ratios (section 4.7)
• Arrival rates (section 4.8)
• Service times (section 4.10)
• The number of tuples in each input batch arriving at the executor receive queues

(ERQs) (section 4.12)

In addition to the delay at the executors, the transfer time between remote worker nodes
needed to be predicted (section 4.11.1), as well as the expected delays due to the other
elements tuples would pass through on a physical path. These included windowing
components and elements of the worker process (section 4.13). Finally, we showed how
the end-to-end latency can be estimated once all the above parameters are estimated.

6.1.5 Chapter 5 — Evaluation

Chapter 5 reports the results of testing several topology designs from simple linear to
complex multi-path topology (see section 5.3). The results showed that the modelling
process could predict arrival rates for proposed physical plans with a high degree of
accuracy (section 5.4). Service times, however, were much harder to predict due to the
effect of pausing as a result of executor co-location affecting the reported service time
(section 5.5).

In order to better gauge the end-to-end latency, without the drawbacks of the complete
latency metric (see section 2.13.2), a custom ground truth latency metric was measured.
The results for the ground truth latency predictions (section 5.7.3) show that errors were
typically below 20% and often 10% or lower for the majority of test topology configurations.
The exception to this is for multiplier topologies with high arrival rates into the final
sending component, which may have been a result of unaccounted-for behaviour in the
communication library used to send messages in the final sink components.

Generally, using a physical plan with high parallelism and executor co-location, as a source
of metrics for predicting plans with lower parallelism (scale down), resulted in worse
prediction accuracy. This over-prediction of the end-to-end latency was attributed to
thread pausing artificially extending the service times used as source metrics for the other
steps which had lower parallelism.



168 CHAPTER 6. DISCUSSION

The results for the complete latency predictions showed significant errors. The presence of
multiplier or windowing components can cause the complete latency distributions to be
significantly higher than the ground truth latency. The modelling process is built around
predicting the average end-to-end latency of each path within the topology. In order to
model the complete latency we use the 90th percentile of these predictions to account
for the worst case nature of the complete latency. The results in this evaluation show
that this is not sufficient, and that in order to model the complete latency the reasonable
worst case of all parameters (90th percentile service time and arrival rate, for example)
should be used. However, even using this may not be enough for accurate modelling of the
complete latency in cases such as the all-in-one topology, where a multiplying component
is followed by a windowing component, due to increased likelihood of child tuples being
placed in later windows.

6.2 Summary of Contributions

The aim of this thesis was to investigate the creation of a performance modelling system
for DSPS topologies in an effort to shorten the time taken to find a physical plan which
meets a given end-to-end latency requirement. Broadly, this goal has been achieved and
our modelling system improves on previous work in this field in several key areas:

Improved accuracy Many of the studies discussed in section 3.2 did not give details
of the accuracy of their performance modelling systems. However, those that did
gave errors of 30%-90% for the simple, linear, shuffle-connection-only topologies that
they tested. The modelling system evaluation in chapter 5 showed that, for simple
topologies, we can achieve errors below 10% even when predicting a physical plan
with eight times the parallelism of the source physical plan, using only 20 minutes of
metrics data.

For more complex topologies, against which most previously proposed modelling
methods have not been tested, our system was able to achieve errors of below 30%
for most topology configurations.

Fields (key) based connections Many of the queueing theory based modelling ap-
proaches, discussed in section 3.2.1, used shuffle (random or round-robin) based
connections only. These previous studies made no attempt to predict the likely
routing pattern through a proposed physical plan with key based connections or
predict the effect unbalanced arrival rates would have on the topology’s performance.
As section 5.4 shows, we have not only been able to predict the arrival rate for
topologies with one key based connection but also for those with consecutive key
based connections, to a high degree of accuracy (typical errors of less than 5%).



6.3. FUTURE RESEARCH 169

Section 5.7.3 shows that we can generally predict the latency of proposed physical
plans, for topologies with key based connections, with errors of 20% or lower and
typically less than 10%.

Diverse component types This research covered test topologies with multiple types of
streaming components: one-to-one, multiplying and windowing. All the previous
queueing theory based research, discussed in section 3.2.1, dealt with simple one-
to-one streaming components only. Despite the issues with multiplier components,
highlighted in section 5.7.3, typically errors of 30% or less can be achieved for
multiplier and 10% or less for windowing and one-to-one component topologies across
a wide range of topology configurations.

The machine learning studies, discussed in section 3.2.2, do cover more diverse
topology component types than the queueing theory based studies. However, the
results of our modelling system are comparable for the linear, shuffle connection only
topologies used by those studies that reported modelling accuracy.

Distributed test environment Many of the test environments for the previous work
discussed in section 3.2.1 used a single worker node and/or did not take network
transfers or whole system tuple flow into account. By contrast, our system was
tested on clusters with multiple worker nodes and took the effect of network transfer
latency into account in the end-to-end latency predictions.

Small amount of input data As this work is based on a queueing theory approach,
many of the comparisons discussed above are related to previous queueing theory
studies. However, this work has shown comparable results to that of the machine
learning based approaches discussed in section 3.2.2, whilst covering a more diverse
set of component types and only using 20 minutes of input data.

Using our modelling approach, a DSPS auto-scaling system could assess a proposed physical
plan from any Storm scheduler implementation and provide an estimate of its end-to-end
latency before the physical plan was deployed. This allows the scaling decision loop to be
shortened and the topology to be scaled much faster upon first deployment and facilitates
faster rebalancing in the face of changing workload.

6.3 Future Research

As highlighted in section 5.8.5, there are several factors which affect the accuracy of the
current modelling system and would benefit from additional research. These factors, along
with ways in which the modelling systems could be expanded, are discussed in the sections
below:



170 CHAPTER 6. DISCUSSION

6.3.1 Additional metrics

Complete latency

Section 2.13.2 describes how the complete latency, Storm’s measure of end-to-end latency,
is calculated and also highlighted how it is a worst case latency measure. Because of the
way the complete latency is implemented, it is highly susceptible to outlier measurements
skewing the recorded metrics, as can be seen in the results shown in section 5.7.3. This
makes it a poor measure of the average or typical performance of a topology. However, it
is common for performance SLAs to be defined in terms of a high percentile rather than
an average; often service up-time and latency targets are set in terms of the “five nines”
or the 99.999th percentile. In this regard the complete latency is the appropriate default
Storm metric for defining SLAs, however it is even more of a worst case measure than the
“five nines” latency and could be considered overly restrictive.

The complete latency prediction results discussed in section 5.7.3 show that our attempt to
predict the complete latency by using the 90th percentile of the predicted path complete
latencies did not yield accurate results. We were under-predicting the complete latency
by some margin. As discussed in chapter 5, a more accurate prediction of the complete
latency would probably require using the worst case version of every modelling parameter.
However, a better approach would be to change the Storm complete latency measurement
to include more detail.

Instead of a simple average across every metric bucket period (see section 2.13), descriptive
statistics (variance, median, mean, quartiles) for the complete latency distribution of
each metric bucket period could be produced. Furthermore, there are many statistical
approaches to approximate the overall population statistics from streaming samples and
these could be investigated with the aim of describing the complete latency distribution
for a topology whilst minimising the memory and processing overhead. Such information
would allow not just the worst case complete latency to be reported but also other statistical
measures, which would give users (and performance modelling systems) more tools to
assess the performance of their topology designs.

Additionally, a measure such as the ground truth latency (see section 5.7.2), could easily
be added to Storm to provide latency tracing data as part of the default metrics. This
would allow integration with standardised, open source, latency tracing implementations
such as the Open Tracing project1.

1https://opentracing.io/

https://opentracing.io/


6.3. FUTURE RESEARCH 171

Queue metrics

Section 5.6 discusses the results of the evaluation of the incoming tuple list size prediction
methods detailed in section 4.12. These show that whilst the error in these predictions was
typically below 30%, in some situations it can be as high as 80%. The method for predicting
the incoming tuple list size is quite complex and involves multiple stages, however estimates
of these values are required because Storm does not provide a measurement of these values
by default.

The complexity of the prediction methods for these values could be reduced if measures of
the incoming tuple list size were added to the default Disruptor queue metrics. Indeed,
a measure of these values was added to the version of Storm running on the test cluster
in order to allow validation of the prediction method. This metric would also benefit (as
with the improvements to the complete latency metric discussed above) from the inclusion
of descriptive statistics for the distribution of tuple counts for the objects entering the
Disruptor queues. This is important as, even with this metric being added, there will still
need to be a prediction of this value for the ERQs in the proposed tuple flow plans and
the more data available, the easier this prediction will be.

Metric distributions

Estimation of both complete latency and Disruptor queue metrics would be more accurate
if more information about the distributions of their measurements within the metric bucket
periods was available. In general, the performance modelling of DSPS topologies would
benefit greatly from this information being available for all performance metrics. However,
delivering this level of detail, without overly increasing the memory and processing overhead
and while maintaining statistical validity, is an interesting research challenge.

6.3.2 Workload prediction

Section 4.3 described how the expected incoming workload into a topology is a key factor
in its performance. Any performance modelling system would need to be able to predict
what the expected workload into a proposed physical plan would be in order to properly
gauge its suitability. Workload prediction is also a key feature of the pre-emptive scaling
discussed in section 1.3.3.

The prediction of network traffic is an entire field of study in itself (Huifang Feng & Yantai
Shu, 2005; Herbst et al., 2017). Whilst the modelling system was designed to accept a
workload prediction, unfortunately there was not time to properly investigate this area.
Future research could focus on which of the many approaches in the literature are most
appropriate for DSPS workloads. Some preliminary work in this area was performed by
the author during their internship at Twitter, resulting in a publication (Kalim et al.,



172 CHAPTER 6. DISCUSSION

2019) in collaboration with the Twitter Real time compute team. More details of this
work can be seen in appendix D.

6.3.3 Routing key distribution

In the prediction of the routing probabilities for fields grouped (key based) connections,
discussed in section 4.5, we have assumed that the field value (key) distribution is fixed
and will remain the same as in the metrics from the source physical plan. This is
a reasonable assumption over the short term. However, it cannot be assumed for all
situations, particularly if a longer prediction time horizon is required. For example, if a
pre-emptive scaling system is predicting several hours in the future, in order to find a
physical plan which will maintain performance in the presence of a predicted workload
spike.

The contents of the incoming tuple stream to the topology and those within the tuple flow
plan may display seasonal variation in the routing probabilities of field grouped connections.
For example, certain sensors could be active at different times of day or measurements
with a particular key may be more likely in the evening than in the morning. Time series
prediction methods, similar to those discussed in section 6.3.2, could be investigated in
order to provide a more robust routing probability prediction.

6.3.4 Service time prediction

Section 5.5 showed that the current service time prediction method, detailed in section 4.10,
can suffer from significant errors when using metrics from source physical plans with high
levels of co-located executors. It was hypothesised that the multi-threaded nature of the
worker processes meant that the wall-clock latency measures reported by Storm included
periods where the executors were paused, whilst other executors were running. Simply
using a weighted average of the source physical plan service time metrics was found to be
insufficient for accurately predicting this complex behaviour.

A method to predict the expected service time in the presence or absence (depending on
the level of co-location) of this multi-threaded pausing will need to be investigated in order
to improve the accuracy of the modelling approach. This is particularly important for
predictions using the metrics from, or when predicting the end-to-end latency of, a densely
co-located physical plans. Although there are process sharing queueing models (Mitrani,
1998; Gross et al., 2008), the complex behaviour of the Java Virtual Machine (JVM)
and operating system (OS) thread scheduling will likely require sophisticated, non-linear
modelling techniques, in order to provide accurate predictions. This will also require data
from many different deployed physical plans to provide sufficiently diverse input to these
models.



6.3. FUTURE RESEARCH 173

6.3.5 Serialisation delay

One of the sources of delay in the physical paths of the topology tuple flow plan, which was
not covered in the current modelling approach, was the serialisation of tuples for transfers
across the network. This aspect of the tuple flow was discussed in section 4.11.1 and it was
decided that, for the relatively simple payloads used in the modelling system evaluation
(strings and numeric values), the delay due to SerDes would be negligible. However, in
production settings the data transferred in the tuples can be large, complex and require
complicated unpacking into custom data types. A way to estimate this SerDes delay
should be investigated. It could take the form of calibration measurements or alterations
to Storm’s code to allow metrics for this aspect to be reported.

6.3.6 Network transfer time

Section 4.11.1 detailed the current approach used by the modelling system to predict the
expected network transfer latency for remote physical connections in the tuple flow plan.
This uses the median latency of the measured round trip time between the worker nodes
and is sufficient for Storm clusters that do not change. However, Storm has the ability
to add worker nodes dynamically to its cluster. Schedulers could produce physical plan
proposals requiring additional nodes to be added. It is also possible that a worker node
could fail and a topology rebalance be triggered as part of failure recovery.

Changes in the network topology are not currently covered by the modelling system and
so future research could look at incorporating the prediction of the effect of the addition
or removal of worker nodes from the Storm cluster. Systems such as Google’s Vivaldi
(Dabek et al., 2004) framework already allow the prediction of latency to proposed nodes
in a network and so could form the basis of this research.

6.3.7 Analytical solution

Calculating the delay due to the complex behaviour of the executor’s Disruptor queues
and ULT required the use of DES, as there were no appropriate queueing models available
in the literature to cover the behaviour of the Disruptor queue (see section 4.2). Whilst
the DES approach did yield good results, it also meant that the simulator had to be run
over many iterations in order to gain accurate estimations of the executor sojourn time.
This meant that the performance modelling process was prolonged, compared to using an
analytical model.

Recently, the author collaborated on preliminary work in this area (Cooper et al., 2019).
This paper proposes both exact and approximate solutions to modelling the performance
of queueing systems like those of Storm’s Disruptor queues. The paper also looks at using



174 CHAPTER 6. DISCUSSION

the analytical model to optimise the various parameters of the queueing system, such as
the flush interval. This highlights another area where the faster results from an analytical
solution could allow further optimisation of DSPS topologies.

Future research could look at integrating the proposed analytical model into the modelling
processes described in this thesis, as well as looking at creating analytical solutions for
other DSPS implementations (see section 6.3.11).

6.3.8 Resource usage

The current focus of the modelling systems is on end-to-end latency performance. However,
another key aspect which concerns users of DSPS is the resource requirements of the
topologies they design. DSPS clusters are formed of worker nodes with finite resources
(memory and processing cycles) and therefore in addition to the expected end-to-end
latency of a proposed physical plan, the resources that proposed plan requires are also an
aspect of its viability.

Extrapolating how the changes in parallelism will affect the required memory and processing
requirements of a topology’s executors is not an easy proposition. For example, certain
keys in a fields grouped connection could cause more processing than others, and changes
in the task assignment in a proposed physical plan could significantly alter the processing
load on certain worker nodes. Memory load for some components could show exponential
or distinctly non-linear growth, with increases in parallelism. These issues represent
an interesting research challenge, the solutions to which would make the performance
modelling system more complete.

6.3.9 Hybrid approach

One of the aims of the research described in this thesis was to provide a way to estimate
physical plan performance without the need for extensive historical data (see section 1.4.1).
Whilst this has been achieved, several of the factors affecting the accuracy of our perfor-
mance predictions (see section 5.8.5) were linked to the non-linear and complex behaviour
of the Storm systems which were not captured by our approach.

A modelling approach using reinforcement-learning or other machine-learning based ap-
proaches could yield higher accuracy by allowing the complex interactions of many of the
DSPS’s systems to be learned over a sufficient spread of historic data. However, another
of the stated aims of this research (see section 1.4.1) was to provide performance estimates
without the need to first obtain large amounts of training or calibration data.

The solution, which could yield higher accuracy without the need to first perform many
scaling operations to gain training data, is to investigate a hybrid approach. Initially, when



6.3. FUTURE RESEARCH 175

a topology is first deployed, a system such as ours could be used to provide performance
estimates for proposed physical plans on only a few minutes of metrics data. Concurrently,
a reinforcement-learning based system could be running, which uses the topology metrics
data over the course of several scaling cycles to create a more complex performance model.
After every scaling cycle the performance results of each system could be validated against
the deployed plan and once the reinforcement-learning system is delivering consistently
better accuracy, the auto-scaling system could switch over to using that approach in future
scaling cycles.

6.3.10 Estimation of error

The performance predictions provided by our modelling system are point estimates of
the average performance of a proposed physical plan. As described in section 1.2, large,
complex topologies of the kind often employed in industry can require significant time to
complete even a single scaling operation. Therefore, it would be advantageous in these
situations to attach a level of uncertainty to the performance estimations. With such a
measure, an auto-scaling system could make an informed decision as to whether a proposed
physical plan was worth deploying. If an SLA is particularly strict, the auto-scaling system
could aim for a comfortable margin of error before deploying a proposed physical plan.

The current modelling system does not provide a measure of uncertainty for its predictions.
However, using distributions instead of point values (such as means, medians, 90th
percentiles, etc.) for the parameters (arrival rates, service times, routing probabilities,
etc.) could be investigated in order to create a distribution of possible performance values
instead of a single average. Other performance modelling methods, such as those used by
Jamshidi & Casale (2016) (see section 3.2.2), can provide uncertainty measures by default
and so could provide another direction for this future research.

6.3.11 Other DSPSs

Section 2.1 laid out why Apache Storm was chosen as the example DSPS for this research.
In the years since this investigation began, several other DSPSs have come to the fore.
Apache Samza and Flink have matured into solid and performant systems, with the latter
gaining particular traction in the fields of data science and finance. Twitter have replaced
their Storm clusters with Heron, a system which is backwards compatible with Storm,
which they developed in-house and have since released under an open source licence.

These systems all have their own sets of design decisions, advantages and trade-offs.
However, most DSPSs share many common characteristics. They will have ways of
representing their streaming queries as query, logical and physical plans. They will have
basic processing units like Storm’s executors, ways to host and coordinate these processing



176 CHAPTER 6. DISCUSSION

units like Storm’s worker processes, they will be able to route certain keys to certain
processing units and so on. There are many ways that the modelling system detailed in
this thesis could be made more generic to allow it to be applied to many different DSPSs.
Future research could focus on identifying these areas of commonality and uniqueness with
the aim of creating a general framework for DSPS performance modelling.

Whilst undertaking their internship with Twitter, detailed in appendix D, the author
began working towards this goal by creating Caladrius, a generic software framework for
DSPS performance modelling. Their experience with Apache Storm was used to create a
performance modelling system for Heron and this framework was used in collaboration with
other researchers to investigate further aspects of DSPS performance modelling (Kalim et
al., 2019).

6.4 Conclusion

At the start of this thesis, in section 1.4.1, we laid out the key aims for this research:

1) Create a performance modelling system for DSPS topologies.
2) Ensure that the system could handle a wide range of topology component and

connection types.
3) Design the systems to be able to perform the modelling whilst only using a small

amount of input data.

Given the results shown in chapter 5, the author believes that they have broadly achieved
these goals, as well as identifying the main sources of error (section 5.8.5) and advocating
ways in which accuracy could be improved.

The performance modelling system detailed in this thesis is by no means complete and,
as section 6.3 lays out, there are many areas where the system could be improved and
expanded. However, we believe it offers a formidable basis for future research in this area.
Furthermore, through the researching of DSPS design and operations, as well as through
meeting many of the creators and users of these systems (see appendix D), the author
is convinced of the pressing need to add more intelligence into the operations of these
business critical systems. With regard to DSPSs, we are not currently making the most of
the flexibility and efficiency that cloud computing offers.

Enabling sensible, and above all optimal, elastic scaling decisions is not just about reducing
costs. More efficient systems will play a vital role in reducing the projected 3.4 terawatt
hours of energy that will be used to power cloud data centres by 2025, a fifth of the world’s
total energy production (Andrae, 2017, p.15). This is made all the more vital, as currently
only 20% of data centre energy needs are supplied by renewable sources (Vidal, 2017). The
research and development of more efficient systems is not just about going faster, it is also



6.4. CONCLUSION 177

about making better use of what we already have, something we could all be better at.



178 CHAPTER 6. DISCUSSION



Bibliography

Abadi, D.J., Ahmad, Y., Balazinska, M., Hwang, J.-H., Lindner, W., Maskey, A.S.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. & Zdonik, S. (2005) ’The Design of the
Borealis Stream Processing Engine’, in Proceedings of the 2005 CIDR Conference. 2005.
[Online]. 5 January 2005 pp. 277–289.

Ahmad, Y., Tatbul, N., Xing, W., Xing, Y., Zdonik, S., Berg, B., Cetintemel, U., Humphrey,
M., Hwang, J.-H., Jhingran, A., Maskey, A., Papaemmanouil, O. & Rasin, A. (2005)
’Distributed operation in the Borealis stream processing engine’, in Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data - SIGMOD
’05. [Online]. 14 June 2005 Baltimore, Maryland: ACM Press. pp. 882–884.

Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., Kao, O.,
Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J.,
Schelter, S., Höger, M., Tzoumas, K. & Warneke, D. (2014) The Stratosphere platform
for big data analytics. The VLDB Journal. 23 (6), 939–964.

Allen, S.T., Pathirana, P. & Jankowski, M. (2015) Storm Applied: Strategies for Real-time
Event Processing. 1st edition. Dan Maharry, Aaron Colcord, & Elizabeth Welch (eds.).
New York: Manning Publications.

Andrae, A.S.G. (2017) Total Consumer Power Consumption Forecast. [Online] [online].
Available from: https://www.researchgate.net/publication/320225452_Total_Consu
mer_Power_Consumption_Forecast (Accessed 22 May 2019).

Aniello, L., Baldoni, R. & Querzoni, L. (2013) ’Adaptive Online Scheduling in Storm’,
in Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems - DEBS ’13. [Online]. 29 June 2013 pp. 207–218.

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,
Srivastava, U. & Widom, J. (2016) ’STREAM: The Stanford Data Stream Management
System’, in Minos Garofalakis, Johannes Gehrke, & Rajeev Rastogi (eds.) Data Stream
Management. [Online]. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 317–336.

Balazinska, M., Balakrishnan, H., Madden, S. & Stonebraker, M. (2005) ’Fault-Tolerance

179

https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast
https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast


180 CHAPTER 6. DISCUSSION

in the Borealis Distributed Stream Processing System’, in Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data - SIGMOD ’05. [Online].
14 June 2005 pp. 13–24.

Barrett, E., Howley, E. & Duggan, J. (2013) Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concurrency
Computation Practice and Experience. 25 (12), 1656–1674.

Bu, X., Rao, J. & Xu, C.Z. (2013) Coordinated self-configuration of virtual machines and
appliances using a model-free learning approach. IEEE Transactions on Parallel and
Distributed Systems. 24 (4), 681–690.

Calzarossa, M.C., Massari, L. & Tessera, D. (2016) Workload Characterization: A Survey
Revisited. ACM Computing Surveys. 48 (3), 1–43.

Carbone, P., Haridi, S., Pietzuch, P., KTH & Skolan för elektroteknik och datavetenskap
(EECS) (2015) Scalable and Reliable Data Stream Processing. [Online].

Chen, L. & Avizienis, A. (1995) ’N-Version Programming: A fault tolerance approach to
reliability of software operation’, in Proceedings of the International Symposium on
Fault-Tolerant Computing. [Online]. June 1995 Pasadena, CA, USA:. pp. 113–119.

Ching, A., Edunov, S., Kabiljo, M., Logothetis, D. & Muthukrishnan, S. (2015) One trillion
edges: Graph processing at Facebook-scale. Proceedings of the VLDB Endowment. 8
(12), 1804–1815.

Cooper, T. (2016) ’Proactive scaling of distributed stream processing work flows using
workload modelling: Doctoral symposium’, in Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems - DEBS ’16. [Online]. 13
June 2016 Irvine, California: ACM Press. pp. 410–413.

Cooper, T., Ezhilchelvan, P. & Mitrani, I. (2019) ’A queuing model of a stream-processing
server’, in 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS). [Online]. October
2019 pp. 27–35.

Dabek, F., Cox, R., Kaashoek, F. & Morris, R. (2004) ’Vivaldi: A decentralized network
coordinate system’, in ACM SIGCOMM Computer Communication Review. [Online].
30 August 2004 pp. 15–26.

Dean, J. & Ghemawat, S. (2008) MapReduce: Simplified data processing on large clusters.
Communications of the ACM. 51 (1), 107.

De Matteis, T. & Mencagli, G. (2016) Keep calm and react with foresight: Strategies
for low- latency and energy-efficient elastic data stream processing. ACM SIGPLAN



6.4. CONCLUSION 181

Notices. 51 (8), 1–12.

Eskandari, L., Huang, Z. & Eyers, D. (2016) ’P-Scheduler: Adaptive hierarchical schedul-
ing in Apache Storm’, in Proceedings of the Australasian Computer Science Week
Multiconference on - ACSW ’16. [Online]. 1 February 2016 pp. 1–10.

Farahabady, M.R.H., Samani, H.R.D., Wang, Y., Zomaya, A.Y. & Tari, Z. (2016) ’A
QoS-aware controller for Apache Storm’, in 2016 IEEE 15th International Symposium
on Network Computing and Applications (NCA). [Online]. 1 October 2016 pp. 334–342.

Fernandez-Baca, D. (1989) Allocating modules to processors in a distributed system. IEEE
Transactions on Software Engineering. 15 (11), 1427–1436.

Floratou, A., Agrawal, A., Graham, B., Rao, S. & Ramasamy, K. (2017) ’Dhalion :
Self-regulating stream processing in Heron’, in Proceedings of the VLDB Endowment.
[Online]. 1 August 2017 pp. 1825–1836.

Foroni, D., Axenie, C., Bortoli, S., Hassan, M.A.H., Acker, R., Tudoran, R., Brasche, G. &
Velegrakis, Y. (2018) ’Moira: A goal-oriented incremental machine learning approach
to dynamic resource cost estimation in distributed stream processing systems’, in
Proceedings of the International Workshop on Real-Time Business Intelligence and
Analytics. [Online]. 27 August 2018 pp. 1–10.

Fu, T.Z.J., Ding, J., Ma, R.T.B., Winslett, M., Yang, Y. & Zhang, Z. (2015) ’DRS:
Dynamic resource scheduling for real-time analytics over fast streams’, in 2015 IEEE
35th International Conference on Distributed Computing System. [Online]. 29 June
2015 pp. 411–420.

Gautam, B. & Basava, A. (2019) Performance prediction of data streams on high-
performance architecture. Human-centric Computing and Information Sciences. 9 (1),
2.

Gordon, W.J. & Newell, G.F. (1967) Closed queuing systems with exponential servers.
Operations Research. 15 (2), 254–265.

Graham, B., Floratau, A. & Agrawal, A. (2017) From rivulets to rivers: Elastic stream
processing in Heron. [Online] [online]. Available from: https://conferences.oreilly.com/
strata/strata-ca-2017/public/schedule/detail/55639.

Gross, D., Shortle, J.F., Thompson, J.M. & Harris, C.M. (2008) Fundamentals of Queueing
Theory. 4th edition. Vol. 627. John Wiley & Sons.

Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D. & Zadeh, R. (2013) ’WTF: The who
to follow service at twitter’, in Proceedings of the 22nd International Conference on
World Wide Web. [Online]. 13 May 2013 Rio de Janeiro, Brazil:. pp. 505–514.

https://conferences.oreilly.com/strata/strata-ca-2017/public/schedule/detail/55639
https://conferences.oreilly.com/strata/strata-ca-2017/public/schedule/detail/55639


182 CHAPTER 6. DISCUSSION

Hadoop, A. (2019) Apache Hadoop. [Online] [online]. Available from: http://hadoop.apa
che.org/.

Heinze, T., Jerzak, Z., Hackenbroich, G. & Fetzer, C. (2014) ’Latency-aware elastic
scaling for distributed data stream processing systems’, in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. [Online]. 26 May 2014
pp. 13–22.

Heinze, T., Ji, Y., Jerzak, Z., Pan, Y., Grueneberger, F.J. & Fetzer, C. (2013) Elastic
complex event processing under varying query load. BD3@ VLDB. 101825–30.

Heinze, T., Pappalardo, V., Jerzak, Z. & Fetzer, C. (2014) ’Auto-Scaling Techniques for
elastic data stream processing’, in 2014 IEEE 30th International Conference on Data
Engineering Workshops. [Online]. 31 March 2014 pp. 296–302.

Heinze, T., Zia, M., Krahn, R., Jerzak, Z. & Fetzer, C. (2015) ’An adaptive replication
scheme for elastic data stream processing systems’, in Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems - DEBS ’15. [Online].
24 June 2015 pp. 150–161.

Herbst, N., Amin, A., Andrzejak, A., Grunske, L., Kounev, S., Mengshoel, O.J. &
Sundararajan, P. (2017) ’Online Workload Forecasting’, in Samuel Kounev, Jeffrey
O. Kephart, Aleksandar Milenkoski, & Xiaoyun Zhu (eds.) Self-Aware Computing
Systems. [Online]. Cham: Springer International Publishing. pp. 529–553.

Hesse, G. & Lorenz, M. (2015) ’Conceptual survey on data stream processing systems’,
in 2015 IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS). [Online]. 14 December 2015 pp. 797–802.

Huifang Feng & Yantai Shu (2005) ’Study on network traffic prediction techniques’, in
Proceedings. 2005 International Conference on Wireless Communications, Networking
and Mobile Computing, 2005. [Online]. 26 September 2005 pp. 1041–1044.

Jackson, J.R. (1957) Networks of waiting lines. Operations Research. 5 (4), 518–521.

Jamshidi, P. & Casale, G. (2016) ’An uncertainty-aware approach to optimal configuration
of stream processing systems’, in 2016 IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).
[Online]. 19 September 2016 pp. 39–48.

Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D., Forshaw, M. & Roscoe, T. (2018)
’Three steps is all you need: Fast, accurate, automatic scaling decisions for distributed
streaming dataflows’, in Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18). [Online]. 2018 Carlsbad, CA, USA:.
pp. 783–798.

http://hadoop.apache.org/
http://hadoop.apache.org/


6.4. CONCLUSION 183

Kalim, F., Cooper, T., Wu, H., Li, Y., Wang, N., Lu, N., Fu, M., Qian, X., Luo, H., Cheng,
D., Wang, Y., Dai, F., Ghosh, M. & Wang, B. (2019) ’Caladrius: A Performance
Modelling Service for Distributed Stream Processing Systems’, in Proceedings of the
35th IEEE International Conference on Data Engineering. [Online]. 8 April 2019
Macau SAR, China:. pp. 1886–1897.

Kendall, D.G. (1953) Stochastic processes occuring in the theory of queues and their
analysis by the method of the imbedded Markov chain. The Annals of Mathematical
Statistics. 24 (3), 338–354.

Kingman, J.F.C. (1961) The single server queue in heavy traffic. Mathematical Proceedings
of the Cambridge Philosophical Society. 57 (October), 902.

Kleppmann, M. (2017) Designing Data Intensive Applications. O’Reilly Media Inc.

Kreps, J. (2014) Questioning the Lambda Architecture. [Online] [online]. Available from:
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (Accessed 19
January 2019).

Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J.M.,
Ramasamy, K. & Taneja, S. (2015) ’Twitter Heron’, in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. [Online]. 27 May 2015
pp. 239–250.

Lax, R., Chernyak, S. & Akidau, T. (2018) Streaming Systems. O’Reilly Media, Inc.

Li, J., Pu, C., Chen, Y., Gmach, D. & Milojicic, D. (2016) ’Enabling elastic stream
processing in shared clusters’, in 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). [Online]. 27 June 2016 pp. 108–115.

Li, T., Tang, J. & Xu, J. (2016) Performance modelling and predictive scheduling for
distributed stream data processing. IEEE Transactions on Big Data. 2 (4), 353–364.

Little, J.D.C. (1961) A proof for the queuing formula: L = lambda W. Operations Research.
9 (3), 383–387.

Liu, X. & Buyya, R. (2017) ’D-Storm: Dynamic resource-efficient scheduling of stream
processing applications’, in 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS). [Online]. 15 December 2017 pp. 485–492.

Lohrmann, B., Janacik, P. & Kao, O. (2015) ’Elastic stream processing with latency
guarantees’, in 2015 IEEE 35th International Conference on Distributed Computing
Systems. [Online]. 29 June 2015 pp. 399–410.

Lombardi, F., Aniello, L., Bonomi, S. & Querzoni, L. (2018) Elastic symbiotic scaling of
operators and resources in stream processing systems. IEEE Transactions on Parallel

https://www.oreilly.com/ideas/questioning-the-lambda-architecture


184 CHAPTER 6. DISCUSSION

and Distributed Systems. 29 (3), 572–585.

Lombardi, F., Muti, A., Aniello, L., Baldoni, R., Bonomi, S. & Querzoni, L. (2019)
PASCAL: An architecture for proactive auto-scaling of distributed services. Future
Generation Computer Systems. 98342–361.

Lorido-Botran, T., Miguel-Alonso, J. & Lozano, J.A. (2014) A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Computing.
12 (4), 559–592.

Marz, N. & Warren, J. (2015) Big Data - Principles and Best Practices of Scalable Realtime
Data Systems. New York: Manning Publications.

Masotto, X., Gupta, S. & Sanbhadti, R. (2015) ’Dynamic Topology Scaling in Apache
Storm’, in Technical Report. [Online]. 2015 University of Illinois at Urbana-Champaign.

Meyn, S.P. & Down, D. (1994) Stability of generalized Jackson networks. The Annals of
Applied Probability. 4 (1), 124–148.

Mitrani, I. (1998) Probabilistic Modelling. Cambridge University Press.

Neumeyer, L., Robbins, B., Nair, A. & Kesari, A. (2010) ’S4: Distributed stream computing
platform’, in 2010 IEEE International Conference on Data Mining Workshops. [Online].
13 December 2010 pp. 170–177.

Peng, B. (2015) Elasticity and resource aware scheduling in distributed data stream
processing systems. [Online]. University of Illinois.

Peng, B., Campbell, R., Hosseini, M., Hong, Z. & Farivar, R. (2015) ’R-Storm: Resource-
aware scheduling in Storm’, in Proceedings of the 16th Annual Middleware Conference.
[Online]. 24 November 2015 pp. 149–161.

Reiser, M. & Lavenberg, S.S. (1980) Mean-value analysis of closed multichain queuing
networks. Journal of the ACM. 27 (2), 313–322.

Sasikala, S. & Indhira, K. (2016) Bulk service queueing models - A survey. International
Journal of Pure and Applied Mathematics. 106 (6), 43–56.

Singhal, A. (2012) Introducing the Knowledge Graph: things, not strings. [Online] [online].
Available from: https://googleblog.blogspot.com/2012/05/introducing-knowledge-
graph-things-not.html (Accessed 29 May 2019).

Sun, D. & Huang, R. (2016) A stable online scheduling strategy for real-time stream
computing over fluctuating big data streams. IEEE Access. 48593–8607.

Sun, D., Yan, H., Gao, S., Liu, X. & Buyya, R. (2018) Rethinking elastic online scheduling
of big data streaming applications over high-velocity continuous data streams. The

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html


6.4. CONCLUSION 185

Journal of Supercomputing. 74 (2), 615–636.

Taylor, S.J. & Letham, B. (2018) Forecasting at scale. The American Statistician. 72 (1),
37–45.

Tesauro, G., Jong, N.K., Das, R. & Bennani, M.N. (2006) ’A hybrid reinforcement learning
approach to autonomic resource allocation’, in Autonomic Computing, 2006. ICAC’06.
IEEE International Conference on. [Online]. 12 June 2006 pp. 65–73.

Thompson, M., Farley, D., Barker, M., Gee, P. & Stewart, A. (2011) ’Disruptor: High
performance alternative to bounded queues for exchanging data between concurrent
threads’, in Technical Report. [Online]. May 2011 LMAX.

Toshniwal, A., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D., Taneja, S., Shukla, A.,
Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J., Gade, K. & Fu, M. (2014)
’Storm@twitter’, in Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. [Online]. 18 June 2014 pp. 147–156.

Vakilinia, S., Zhang, X. & Qiu, D. (2016) ’Analysis and optimization of big-data stream
processing’, in 2016 IEEE Global Communications Conference (GLOBECOM). [Online].
4 December 2016 Washington, DC, USA: IEEE. pp. 1–6.

Van Der Veen, J.S., Van Der Waaij, B., Lazovik, E., Wijbrandi, W. & Meijer, R.J.
(2015) ’Dynamically scaling Apache Storm for the analysis of streaming data’, in
Proceedings - 2015 IEEE 1st International Conference on Big Data Computing Service
and Applications, BigDataService 2015. [Online]. 30 March 2015 pp. 154–161.

Vidal, J. (2017) ‘Tsunami of data’ could consume one fifth of global electricity by 2025.
[Online] [online]. Available from: https://www.climatechangenews.com/2017/12/11/t
sunami-data-consume-one-fifth-global-electricity-2025/ (Accessed 22 May 2019).

Wang, Y., Wang, H., Jia, Y. & Liu, B. (2006) ’Closed Queueing Network Model for
Multi-tier Data Stream Processing Center’, in Xiaofang Zhou, Jianzhong Li, Heng Tao
Shen, Masaru Kitsuregawa, & Yanchun Zhang (eds.) Frontiers of WWW Research
and Development - APWeb 2006. Lecture Notes in Computer Science. [Online]. 2006
Berlin, Heidelberg: Springer. pp. 899–904.

Xu, J., Chen, Z., Tang, J. & Su, S. (2014) ’T-storm: Traffic-aware online scheduling
in Storm’, in Proceedings of the 34th IEEE International Conference on Distributed
Computing Systems. [Online]. 30 June 2014 pp. 535–544.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. & Stoica, I. (2010) ’Spark :
Cluster computing with working sets’, in HotCloud ’10. [Online]. 22 June 2010 p. 95.

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S. & Stoica, I. (2013) ’Discretized

https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-electricity-2025/
https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-electricity-2025/


186 CHAPTER 6. DISCUSSION

Streams: Fault-tolerant streaming computation at scale’, in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. [Online]. 3 November 2013
pp. 423–428.

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R. & Stoica, I. (2008) Improving
MapReduce performance in heterogeneous environments. OSDI. 8 (4), 7.



Appendix A

Queuing Theory Primer

A.1 Queueing Theory Notation

Queueing systems are made up of one or more queues attached to one or more servers.
Items, usually referred to as jobs, arrive into the queue at an average rate λ (arrival rate)
and are processed by the server at rate µ (service rate). Sometimes the service time (b) of
the server is used to denote its performance, which is equivalent to 1

µ
. A queueing system

experiences an offered load (ρ) which describes the probability that a server is busy serving
a job:

ρ = λ

µ
= λb

A single server queueing system is said to be stable if ρ < 1. If this is not true then
the system is said to be unstable and the queue will grow indefinitely. The performance
measures for a queueing system include: the average number of jobs waiting for service
(l); the total number of jobs in the system (L); the average waiting time in the queue (w);
and the average sojourn time (W ), which is the time from a job arriving at the queue to it
completing service. The performance measures are illustrated in figure A.1 and the values
are related by the following formulas:

W = w + b

L = l + 1

187



188 APPENDIX A. QUEUING THEORY PRIMER

Queue

Server

Job

Figure A.1: The standard performance measures for a queueing system.

A.2 Queue Categorisation

Queueing systems are categorised according to a system first formalised by Kendall (1953).
Kendall’s original notation denotes the type of queueing node using three terms: A/S/c
where A denotes the distribution of the time between arrivals into the queue, S the service
time distribution and c the number of servers at the node. This has been extended in
recent years into a more detailed form:

AX/SY /c/K/N/D

AX The arrival process describes the type of distribution the arrival rate of jobs follows.
Typical values are M for memoryless (Poisson), D for deterministic (fixed), G for
general and Ek for Erlang. The optional superscript X usually refers to batch arrivals
and the value indicates how many jobs arrive in each batch.

SY Similar to the arrival process, the service time distribution has typical values such as
M, D, G and Ek. The optional superscript Y indicates bulk (batch) service with the
value representing the number of jobs served at one time.

c The number of servers at this queueing node. This number represents how many jobs
can be processed in parallel at this node.

K The capacity of the system. This number, if present, indicates the maximum number of
jobs in the queueing node. This usually includes those in service but may sometimes
simply be the queue limit. Once the queue node population reaches this value new
arrivals will be turned away. If this number is not present it is assumed that K =∞.



A.2. QUEUE CATEGORISATION 189

N The size of the job source population. A small population will significantly affect the
effective arrival rate, because as more jobs queue up there are fewer left available to
arrive into the system. If this number is not present then it is assumed that N =∞.

D The queue discipline describes in what order jobs in the queue are served. FIFO for first
in first out (first come first served), LIFO for last in first out (last come first served),
SIRO for service in random order, PN for priority service and PS for processor
sharing where all jobs in the queue are served at the same time (time to process all
jobs in the queue is the same as other disciplines but all jobs will finish at the same
time). If this value is not present then the queue is assumed to be FIFO.



190 APPENDIX A. QUEUING THEORY PRIMER



Appendix B

Executor Simulator Implementation

In order to predict the latency a tuple will experience whilst passing through the executor’s
user logic thread (ULT), a discrete-event simulation (DES) for this element was created.
The sections below describe the process and algorithms employed in the simulator.

B.1 Simulation Process

In order to simplify the simulator we have assumed that all the possible events that may
occur for the ULT (input tuple list arrival, timer flush signal or tuple service completing)
happen at rates where the inter-arrival time between events is exponentially distributed.
This allows us to combine the probabilities of all three events into a single spectrum:

P (arrival) = λ

λ+ τ + µ

P (flush) = τ

λ+ τ + µ

P (service) = µ

λ+ τ + µ

These events can be simulated by sampling from a uniform distribution between 0 and 1
and comparing that sample value to the relative probabilities of each event. Figure B.1
illustrates the probability spectrum for the ULT. A randomly chosen value (x) will indicate
an arrival if 0 ≤ x < A, a flush signal if A ≤ x < B and tuple service completing if
B ≤ x < 1.

The simulator is run until a predetermined number of arrivals have occurred. For each
iteration, once the type of event has been chosen, the effect of that event on the state

191



192 APPENDIX B. EXECUTOR SIMULATOR IMPLEMENTATION

0.0 1.0

A B

Arrival Timer flush Service completes

Figure B.1: The event probabilities used in the ULT DES.

of the ULT can be calculated. This is detailed in section B.2 below. For each arrival
event the number of arriving tuples (in the input tuple list — see section 4.12) is added to
the total arrival count and the total number of tuple currently within the ULT system is
added to an aggregate total system population count. At the end of the simulation run
the total system population count is divided by the total arrival count to give the average
number of tuples (L) in the ULT system when a new tuple arrives. This is then used
in conjunction with Little’s Law (Little, 1961), see equation B.1 below, to calculate the
average sojourn time (W ) for tuples through the ULT by dividing the average tuples in
system (L) by the tuple arrival rate (γ).

L = γW (B.1)

B.2 Full System Simulator

3 1 2 1 1 3 1 2 1 2 2 3

1 
2 
1 
1 
3 
1 
2 
1 

3 
2 
1 
3 
1 
2 
2 
3 

1 
1 
1 
1 
2 
1 
3 
1 

3 2 3 1 3 2 2 1 2 1 1

Figure B.2: Elements of the executor ULT showing the state variables used in the DES.

To simulate the ULT’s operation, the effect of each of the possible events (tuple list arrival,



B.2. FULL SYSTEM SIMULATOR 193

flush signal or tuple service completion) on the state of the ULT system needs to be defined.
To do this we first need to define the parameters of the ULT state:

(B,O,R, q, f)

Where:

B Is a vector of numbers indicating the number of tuples in each input tuple list in the
Disruptor queue’s input batch. The length of this vector must be less than or equal
to the input batch limit kB (|B| ≤ kB).

O Is a vector of B vectors, which represents the size of batches currently in the Disruptor
queue’s overflow queue.

R Is a vector of numbers, where each value represents a slot in the ring buffer and indicates
the number of tuples in the list in that slot. The length of this vector must be less
than or equal to the Ring Buffer size limit kR (|R| ≤ kR).

q Is a value indicating the number of tuples in the internal buffer.

f Is a boolean value indicating if the Disruptor queue is currently in a flushing state.

Figure B.2 illustrates how these parameters are related to the elements of the ULT. In
addition to the state variables above, the following variables are also part of the ULT
simulator:

kB Is the size limit of the Disruptor queue input batch and is the value at which input
batches will either be moved to the Ring Buffer or the overflow queue if there is
insufficient space. This is the limit for the length of the simulator’s B vector.

kR Is the size limit for the Disruptor queue Ring Buffer. This is the limit for the length of
the simulator’s R vector.

I Is the number of tuples in each arriving tuple list.

λ Is the arrival rate of tuple lists into the executor receive queue (ERQ).

γ Is the equivalent tuple arrival rate into the ERQ.

τ Is the rate at which a flush signal is sent to the overflow queue.

µ Is the rate at which individual tuples are served from the internal buffer by the task
instance.

There are three distinct events that can occur in the context of the executor’s ULT: the
arrival of an input tuple list; the overflow queue periodic flush signal is issued; and a tuple
completes service within the task. The effects on the Disruptor queue’s state, due to each



194 APPENDIX B. EXECUTOR SIMULATOR IMPLEMENTATION

of these events, are discussed in sections 2.7.3, 2.7.4, 2.7.5 respectively. The sections below
detail how each of these events affect the simulator’s state parameters listed above.

B.2.1 Tuple list arrival

Figure 2.5 shows a flow diagram of the possible state changes as a result of a tuple list
arrival. These stages of the flow diagram have been converted into the procedure, shown
in Algorithm 1, which relates these steps to the ULT system state shown above.

Input: Incoming tuple list size (I)
Add I to B;
if |B| ≥ kB then

if |O| > 0 then
Move B to O;

else
if kr − |R| ≥ |B| then

Move values from B to R;
else

Move B to O;
end

end
end
while |O| > 0 do

Get the first (oldest) batch vector (b) in O;
if kr − |R| ≥ |b| then

Add values from b to R;
else

Exit the while loop;
end

end
if |O| ≤ 0 then

Set f to False;
end

Algorithm 1: Tuple list arrival operation.

B.2.2 Flush interval completes

Figure 2.6 shows a flow diagram of the possible state changes as a result of a timed
flush interval completing. These stages of the flow diagram have been converted into the
procedure, shown in Algorithm 2, which relates these steps to the ULT system state shown



B.2. FULL SYSTEM SIMULATOR 195

above.

Add current B to O;
while |O| > 0 do

Get the first (oldest) batch vector (b) in O;
if kr − |R| ≥ |b| then

Move values from b to R;
else

Set f to True;
Exit the while loop;

end
end
if |O| ≤ 0 then

Set f to False;
end

Algorithm 2: State change operations when timed flush interval completes.

B.2.3 Tuple completes service

Figure 2.7 shows a flow diagram of the possible state changes as a result of a tuple
completing service with the ULT task. These stages of the flow diagram have been
converted into the procedure, shown in Algorithm 3, which relates these steps to the ULT
system state shown above.

if q > 0 then
Move 1 tuple from q to the server;

else
if |R| > 0 then

Move the sum of all values in R and add that to q;
Move 1 tuple from q to the server;

end
end
if f is True then

Perform timed flush operations;
end

Algorithm 3: State change operations when a tuple completes service.

B.2.4 Continuous flush operation

During the Disruptor queue’s operation there is the possibility of a flush of the overflow
queue to continue (linger) for some time. This can occur if the arrival and service rates
are such that when a flush operation is triggered, new batches are added to the overflow



196 APPENDIX B. EXECUTOR SIMULATOR IMPLEMENTATION

queue faster than they can be cleared into the ring buffer. This situation means that the
flushing operation never stops and batches will be placed onto the ring buffer as soon as
space becomes available.

In the algorithms above we simulate the possibility of a lingering flush operation by setting
a boolean flag (f) to true during the timer flush completion algorithm, at the point where
the ring buffer is full but there are still batches in the overflow queue.

During the service completion algorithm the boolean flag is checked and the flush interval
completion procedure is run again. During an arrival the flush interval code is run as part
of the arrival process, however the value of f is set to false if the overflow queue is cleared.
If the overflow queue is not cleared then the value of f stays as it was. In this way, if
the system is in a flushing state (f is True), then the flush procedure will always be run
during each simulated event. As the overflow queue can only be cleared when space is
available on the ring buffer and this can only happen after service completes to create
space in the ULT internal buffer, there is no way that the overflow queue could become
empty between the events defined by the simulator (arrival, flush or service) and so the
DES approach remains valid in the presence of the Disruptor queue flushing behaviour.

B.3 Simplified System Simulator

Whilst the full system simulator, described in section B.2, simulates all elements of the
Disruptor queue and task instances within the executor ULT, the state representation
is complex and involves retaining many values (vectors of vectors) in memory. Whilst
the full system simulation allows the investigation of the inter-play between the various
elements of the ULT, it is slow to operate and memory intensive.

As discussed in section B.1, in order to model the sojourn time (W ) across the ULT all we
need to know is the average tuple arrival rate (γ) and the average number of tuples in the
system at the time of arrival (L), see equation B.1. If we focus solely on the number of
tuples in the system, then the simulator state can be simplified.

Once a tuple has been added to either the overflow queue, or the ring buffer if the overflow
queue was empty and there was space, then that tuple can only leave via service in the
task instance. How and where that tuple is stored, or whether the system is flushing or not,
is immaterial to the calculation of L. The input batch, however, can prevent tuples from
entering into the overflow queue and therefore ultimately being processed. If the arrival
rate is low and/or the service rate is high then tuples added to the overflow queue/ring
buffer could be cleared very quickly, but tuples must wait in the input batch for either a
flush interval to complete or for the batch to fill up. Therefore, thanks to the input batch,
arriving tuples could see a higher population (with tuples in the input batch but all other



B.4. COMPARISON OF SIMULATORS 197

elements empty) than if the input batch was not present. To capture this behaviour we
need to simulate the input batch, however all other elements can be reduced to a single
value.

The above observation reduces the state of this simplified simulator to two parameters:

(B, u)

Where B is the input batch vector holding the number of tuples in each input batch, as
in section B.2, and u is the combined number of tuples in all the other elements of the
ULT (namely the overflow queue, ring buffer and the internal buffer), this simplified state
significantly reduces the complexity of the state transitions that result from each event.

B.3.1 Tuple list arrival
Input: Incoming tuple list size (I)
Add I to B;
if |B| ≥ kB then

Add the sum of B to u;
Clear B;

end
Algorithm 4: Simplified tuple list arrival operation.

B.3.2 Flush interval completes

Add the sum of B to u;
Clear B;
Algorithm 5: Simplified state change operations when timed flush interval completes.

B.3.3 Tuple completes service

if u ≥ 1 then
Reduce the value of u by 1;

end
Algorithm 6: Simplified state change operations when a tuple completes service.

B.4 Comparison of Simulators

The simulator described in section B.3 is significantly more straightforward to implement
and understand than that shown in section B.2. However, the latter was used during the
investigation of the Disruptor queue’s behaviour in order to aid in confirming assumptions
about its performance. Section C.5.5 discusses the implementation details of both these



198 APPENDIX B. EXECUTOR SIMULATOR IMPLEMENTATION

simulation approaches and compares the results and performance of both under various
conditions.



Appendix C

Modelling System Implementation

This appendix details the implementation of the modelling approaches laid out in chapter
4. It also gives details of the various systems and programs used to gather metrics from
the Apache Storm distributed stream processing system (DSPS).

Because naming things is one of the two hardest problems in computer science1, significant
thought went into the naming of the umbrella project under which all the code for this
doctoral research would sit. As the test DSPS is called Storm and in an early version
the metrics gathering approach involved issuing tracer packets into the topologies, we
settled on the name Storm-Tracer. This has the additional benefit of rhyming with storm
chaser, a term for people who follow massive storms (at significant risk to their personal
safety) in order to study them. This seemed apt as this was essentially what the author
had been doing, metaphorically speaking, for the better part of four years. Although with
significantly less risk2 to their physical safety.

An overview of the Storm-Tracer system is given in section C.1, with details of the major
components and processes detailed in sections C.2, C.4, C.5.

All the code referenced in this chapter, as well as the validation code discussed in section 5.2,
is available for review in the digital copy attached to this document.

C.1 Storm-Tracer system overview

Storm-Tracer consists of three main components: metrics gathering; topology structure
storage and analysis; and performance modelling. Figure C.1 shows how these major
components interact with an Apache Storm cluster.

When the Storm scheduler creates a new physical plan, this is issued to the Storm-Tracer
1The others being cache invalidation and off by one errors.
2Mental well-being not withstanding.

199



200 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

system which will store this in the topology structure store. The performance modelling
system will then enact the procedures outlined in chapter 4 by querying the metrics system
to obtain the various summary statistics needed to performed the modelling. Once an
estimate of the end-to-end latency for the proposed physical plan has been calculated, this
can be returned to the Storm scheduler which can then decide if it wishes to deploy the
plan or create a new one.

Performance 
Modelling API

Metrics and 
Monitoring API

Graph 
Database

Storm Tracer

Time Series 
Database

Proposed 
Physical Plan Administration API

Scheduler

Nimbus Node

Worker Node

Supervisor

Worker
Process

Metrics

Worker
Process

Metrics

Real Time Monitor

Worker Node

Supervisor

Worker
Process

Metrics

Worker
Process

Metrics

Real Time Monitor

Topology 
Structure API

Modelling 
Results

Figure C.1: The various components of the Storm-Tracer system.

C.2 Metrics Gathering and Storage

Metrics are the key to accurate modelling of Apache Storm topologies. As discussed in
section 2.13, Storm provides a powerful and extensible metrics framework3.

C.2.1 Time series database

In order to properly investigate the performance of Storm topologies, the metrics from
the various different test cases have to be retained in an easily accessible form. Metrics
from Storm are reported at a constant rate and much of the analysis detailed in chapter 4
requires summary statistics to be calculated over a defined time period when a topology
was configured according to a particular physical plan. There are many options for storing
metrics data, from continuously appending to a series of text based comma separated
values (CSV) files, to constructing a whole separate stream processing pipeline to receive,

3Is should be noted that, as of Storm version 1.2, a second metrics API was introduced with a more
advanced feature set. Storm-Tracer was designed for versions of Storm that used the old API, and as
there is no difference in the measurements reported between the two, Storm-Tracer continues to use the
older (now depreciated) metrics API.



C.2. METRICS GATHERING AND STORAGE 201

process and save the metrics values. However, the simplest approach, that provided good
flexibility, was to use a time series database (TSDB).

TSDBs are a special class of databases that focus on indexing data by time and providing
optimised functionality to query that data. It is possible to configure traditional relational
database systems to store time indexed data, however this often comes with trade-offs in
the form of query performance. TSDBs allow data from defined time periods to be quickly
retrieved and summarised, which is a key requirement for the modelling process.

There are several dedicated TSDBs available. As with the DSPS selection, only open-
source options were considered. In 2015, when the metrics gathering system was being
designed, the most popular open source option was InfluxDB4. This system provided a
HTTP REST application programming interface (API) to quickly add data to a database,
allowed separating metrics into different measurements and allowed additional indexed tag
fields to be added to the metrics. This allowed each of the metrics that Storm provided
(execute latency, emit count, etc.) to be placed in their own measurement in the database
and tagged with the topology, task and worker process identifier information. This meant
that obtaining summaries of particular metrics was a simple SQL-like query away. For
example, the average execute latency for each task of each component, in a given topology,
in a given time period, could be found using the following command:

SELECT MEAN(latency) FROM "execute-latency"
WHERE topology = 'Test1'
AND time >= '2020-03-17T14:24:09'
AND time <= '2020-03-17T14:34:11'
GROUP BY component, taskID

Using a TSDB has the added advantage of unifying the storage and querying aspect of
metrics gathering into one operation. Using CSV files would have been a simpler approach
from an implementation standpoint, but would have required a further transform and
load step when the data was to be queried. The use of a centralised database for metrics
gathering does, however, introduce a bottleneck. InfluxDB can deal with a large volume
of input requests, but for large topologies and/or topologies with a low metric bucket
period the metrics reporting rate could be very high. This is unlikely to be an issue for
the test cases used in this research, however the system could be made more robust by
placing a message broker (such as Apache Kafka) in front of the database and using a
secondary processing step to extract messages off the broker and load these into InfluxDB.
This would smooth out load spikes and allow the system to be resilient to slow writes
causing incoming requests to be dropped.

4https://www.influxdata.com/time-series-platform/

https://www.influxdata.com/time-series-platform/


202 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

C.2.2 Custom metrics

The metrics gathering code described in the following sections can be seen at the link
below, and a copy is available in the digital media attached to this document:

https://github.com/tomncooper/stormtracer

InfluxDB metrics consumer

In order for Storm metrics to be sent to an InfluxDB instance, a custom metrics consumer
implementation is required so that Storm knows how to format the metrics and where
to send them. Storm’s metrics API5 provides several pre-built consumers, including ones
which log metrics to files (this was the CSV option described earlier) and a consumer
which will forward metrics to a HTTP end point which would allow a separate server (an
example implementation of which is also provided by Storm) to receive and process the
metrics. It also provides interfaces to allow the creation of your own custom consumer.

InfluxDB provides several different language clients, including Java. This provides access to
a batch writing InfluxDB client that can minimise the network communication each Storm
metric consumer has to make. The behaviour of the metrics consumer implementation is
important to the overall performance of the Storm topology. As the Storm documentation
states:

“Please keep in mind that MetricsConsumerBolt is just a kind of bolt, so
[the] whole throughput of the topology will go down when registered metrics
consumers cannot keep up [with] handling [the] incoming metrics. . . One idea
to avoid this is [by] making your implementation of Metrics Consumer as
non-blocking [as possible.]”

All the executors within the topology will be connected to the metrics consumer bolts via
a shuffle grouped connection. The consumer executors will be scheduled in the topology
physical plan in the same way as the executors of the user defined bolts. Large volumes of
metrics — either from a large number of executors, low metric bucket period and/or a
consumer that is slow to process metrics — could lead to the metrics consumer bolt being
overloaded. It is therefore important to design a consumer implementation that processes
metrics as efficiently as possible and also ensure that the parallelism of the consumer is
set to an appropriate level.

Setting the parallelism of the consumers is a modelling task in itself. The overall arrival
rate into the metric consumers will be approximately equal to the number of executors
and Ackers in the topology multiplied by one over the configured metric bucket period.
Unfortunately, despite the metrics consumers being based on the standard bolt implemen-

5https://storm.apache.org/releases/1.2.2/Metrics.html

https://github.com/tomncooper/stormtracer
https://storm.apache.org/releases/1.2.2/Metrics.html


C.2. METRICS GATHERING AND STORAGE 203

tation, Storm does not provide metrics for the processing time of the metrics consumers
themselves so modelling their performance is not possible. However, as metrics processing
is not required to meet a performance target and is only required to keep up with the
metric production by the executors, setting the parallelism for the metrics consumer to
match the number of worker processes is usually sufficient.

The InfluxDB metric consumer implementation we created takes advantage of the InfluxDB
Java clients multi-threaded batch writing functionality to process all the metrics from a
single bucket period, for all tasks on a given executor, into one batch and send that to the
InfluxDB server. Once the batch is created and issued, a separate thread deals with the
sending of the batch, freeing the consumer to work on the next batch.

Storm-Tracer metrics manager

The Storm metrics API allows users to register custom metrics which will be reported to
the configured metrics consumer along with the default metrics. Storm provides interfaces
for several common metrics types such as count or latency metrics. Below, we detail
several custom metrics which are required to aid in the performance modelling process.
Registering metrics requires several setup steps so, in order to reduce the load on topology
creators, we created a Storm-Tracer metrics manager class that would automatically name,
register and perform the other setup steps, as well as handle the logic for updating the
metric. All that needs to be supplied in the bolt’s execute method is the input tuple
(which contains source task information).

Task-to-task transfer counts

As discussed in section 4.4, the execute count metrics used to calculate the routing
probabilities only provide information on the incoming stream name and the source
component. This is not an issue for shuffle grouped connections as these are load balanced
and therefore the expected routing probabilities can be inferred from the number of
downstream executors. However, to calculate the routing probabilities for fields grouped
(key based) connections we need the task-to-task transfer count.

We have created a custom Storm metric which tracks the task-to-task transfers. The
Storm-Tracer metrics manager mentioned above provides methods to log a transfer, which
extracts the source task identifier from the tuple and updates its internal counts. Once
every metrics bucket period these counts are reported to the metrics consumer and sent to
the TSDB.



204 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

C.2.3 Cluster metrics

Storm provides a rich set of metrics by default, however these do not include the resource
usage on the worker node. In order to access this information a real time monitor (RTM)
program was created that collects metrics on the worker nodes and reports these to the
TSDB. The code for the worker node monitoring program can be seen at the address below
as well as in the digital media attached to this document:

https://github.com/tomncooper/tracer_rtm

The RTM is a self contained executable that can be configured with the TSDB connection
information and a reporting period. Once every reporting period, which is 1 minute by
default, the RTM will aggregate the metrics it monitors and issue them to the TSDB.

Early on in this research project, there was an intention to look at modelling resource
usage as well as topology performance. As a result the RTM includes not only the metrics
described below, but also the ability to extract central processing unit (CPU) load and
random access memory (RAM) usage information6 about each of the worker processes
running on the worker node as well as some information about the executor threads within
the worker process.

Transfer latencies

As discussed in section 4.11, accounting for the delay due to sending tuples across the
network is an important factor in the modelling process. In order to be able to estimate
the likely network delay we need to be able to measure the existing network delay between
the worker nodes.

To do this the RTM uses the fping8 program to issue Internet Control Message Protocol
(ICMP) packets to a list of active worker node addresses. fping allows multiple packets to
be sent to each host address and calculates a statistical summary once all have returned.
This a prudent approach, as relying on a small number of measures leaves the measurements
open to bias due to latency spikes. It also offers a significant usability advantage over the
standard ping program as it asynchronously sends packets to the host addresses.

Each RTM instance sends a periodic heartbeat message to the TSDB. When the metric
reporting period activates the RTM polls the TSDB for the unique set of host addresses
active within a configurable period. This list of hosts is then used with the fping program
and the round trip time statistics are parsed from the output of that program. These
statistics are then issued to the TSDB and the RTM waits for the next reporting period
to activate.

6This is done via the psutil7 Python library.
8https://fping.org/

https://github.com/tomncooper/tracer_rtm
https://fping.org/


C.3. INTERACTING WITH NIMBUS 205

C.3 Interacting with Nimbus

Many aspects of the Storm-Tracer modelling system require interacting with the Nimbus
node of the Storm cluster. As discussed in section 2.3.1, Nimbus is the central control
node of the cluster and is where topologies are sent to be deployed and where changes
to topology configurations are issued. Other than the Java based command line client
used to issue and configure topologies, Storm does not provide Nimbus clients that can
be used with external programs. However, the Nimbus server is based on Apache Thrift9

which is a language agnostic system for creating services. It allows you to define your
service end points, client methods and the messages that will pass between them in a
definition file. You can then use the Thrift compiler to create program implementations
in various languages. The Storm Thrift definition file provides definitions for a Nimbus
client interface which is used by the Java command line client to issue commands to
the Storm cluster. Using this definition file and the Python thriftpy210 library allows
the modelling system to access all the functionality of the Nimbus server natively. This
allows not only the automation of rebalance commands, used in the data gathering for
the validation process described in section 5.2.1, but also access to information on the
topologies currently running on the Storm cluster.

C.4 Topology Structure Storage and Analysis

One of the key features the modelling system must provide is the ability to query the
proposed and currently running physical plans of the topologies it is modelling. The initial
implementation of the modelling system used an in-memory representation of the topology
physical plan in the form of a custom Python class, which wrapped a nested map structure
representing the nodes and edges of the plan and contained methods for performing
queries against the plan. Initially this was a reasonable approach, as the modelling system
development started by using the logical plan as the basis for the tuple flow through the
topology. As a better understanding of the operation of Storm’s internal systems was
developed and the tuple flow plan emerged as the more accurate representation, the old
map based implementation became unwieldy. Performing queries to identify paths that
included the worker process nodes, as well as incorporating worker nodes, meant changing
many of the methods used to access the map.

In addition to this, the in-memory map based representation could only be constructed
from a running topology via the Nimbus client (see section C.3). This meant that it would
be difficult to compare and investigate multiple topology configurations simultaneously.
In order to save copies of the map based topologies the class instance would have to be

9https://thrift.apache.org/
10https://github.com/Thriftpy/thriftpy2

https://thrift.apache.org/
https://github.com/Thriftpy/thriftpy2


206 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

serialised to disk and retrieve later, these multiple topology files would not be portable
between different languages and machines and would require additional effort to organise
and catalog them.

It became clear that storing these, now quite complex, directed graphs (DiGs) would
require a more specialised system. Several options were considered, including using a
specialised graph library such as Python’s NetworkX11 or Java’s JGraphT12 to provide
the tuple flow plan storage. However, whilst these options possessed many graph analysis
algorithms and easy setup, they had limited query flexibility and storing and querying
across multiple graphs was limited or not possible. Eventually it was decided to utilise a
dedicated graph database to store the tuple flow plans for currently running and proposed
topology configurations.

C.4.1 Graph database

Graph databases are specifically designed for storage and querying of highly connected
data. Examples of their use include analysing friendship networks on social media sites
like Facebook (Ching et al., 2015) or Twitter (Gupta et al., 2013), to identifying relevant
information related to a current search term like in Google’s Knowledge Graph feature
(Singhal, 2012).

Using a separate database to store the tuple flow plans allows the modelling system to
abstract away the topology structure storage and query aspects of its operation. It also
means that many different tuple flow plans for a given running topology could be stored
and linked to their operation period which could then be used in conjunction with the
TSDB to perform modelling on a particular topology configuration with ease. This would
be useful for validation of the modelling approach but would also allow future systems to
compare a proposed tuple flow plan to the most similar recorded topology tuple flow plan
and use metrics from that period to make its predictions.

There are many graph databases available, however as with other systems used in this
research, options were limited to open-source systems with a large user base. Neo4j13 is
one of the most popular graph databases, is open source, has a mature codebase and a
multitude of client and extension libraries. Neo4j uses the labeled property graph model
where nodes can have one or more labels (such as Person or executor) which allow them
to be easily indexed and grouped. Nodes can also have multiple properties (essentially
key/value pairs). Nodes are linked (in one or both directions) by relationships, that have
a single label or type (such as Knows or LogicallyConnectedTo) and can also have multiple
properties.

11https://networkx.github.io/
12https://jgrapht.org/
13https://neo4j.com/product/

https://networkx.github.io/
https://jgrapht.org/
https://neo4j.com/product/


C.4. TOPOLOGY STRUCTURE STORAGE AND ANALYSIS 207

C.4.2 Topology graph structure

For the tuple flow plan, the worker nodes, worker processes and executors can be represented
as nodes, with appropriate labels for their respective types. Executors have properties such
as component name and the range of task values they contain, worker processes have host
name and port properties and worker nodes contain host name and IP address information.
It was decided that the individual tasks did not need to be represented as separate nodes,
as they are not dealt with individually in queries and are only ever interacted with via
their containing executor. Separate node labels for spouts and bolts were not deemed
necessary as this aspect could be added as a property to each executor node.

In order to distinguish one topology from another all elements of a particular tuple flow
plan are linked to a root Topology node with a BelongsTo relationship:

CREATE (ex:Executor {component: "BoltA", start_task: 12, end_task: 15}),
(ex)-[:BelongsTo]->(:Topology {id: "Test1"})

The above code is an example of the Cypher14 query language that Neo4j uses to create,
manipulate and query graphs. Nodes are represented in parentheses, relationships use
square brackets with hyphens and greater than or less than signs to indicate directionality,
the labels for each element are prefaced by a colon.

Linking all elements to a root topology node means that they can easily be retrieved using
a query like the one below, which retrieves all the bolt executors for a specific topology:

MATCH (t:Topology {id: "Test1"})<-[:BelongsTo]-(ex:Executor {type: "bolt"})
RETURN ex

Physical plan

The physical plan of the topology can be represented by linking the various Storm element
nodes with an isWithin relationship. For example:

MATCH (ex:Executor {component: "BoltA", start_task: 12, end_task: 15}),
(wp:WorkerProcess {hostname: "Worker1", port: 6700}),
(wn:WorkerNode {hostname: "Worker1", ip_address: "57.178.12.17")

CREATE (ex)-[:isWithin]->(wp)-[:isWithin]->(wn)

The physical plan can then be queried by using these relationships to limit the search to
only the relevant parts of the graph. For example, the IP address of the worker node that
a given executor is in, so that the network latency can be retrieved from the TSDB, can
be found using the following query:

MATCH (ex:Executor {component: "BoltA", start_task: 12, end_task: 15}),
14https://neo4j.com/developer/cypher-query-language/

https://neo4j.com/developer/cypher-query-language/


208 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

(ex)-[:isWithin]->(:WorkerProcess)-[:isWithin]->(wn:WorkerNode)
RETURN wn.ip_address

Logical plan

The logical plan of the topology can be represented by connecting the executors of the
topology with a LogicallyConnected relationship. This relationship can also contain
the stream name, type of grouping that exists between the executors and whether the
connection is local, inter-local or remote:

MATCH (spout:Executor {component: "SpoutA", start_task: 88,
end_task: 89, type: "spout"}),

(exa:Executor {component: "BoltA", start_task: 12, end_task: 15}),
(exb:Executor {component: "BoltB", start_task: 27, end_task: 30}),

CREATE (spout)-[:LogicallyConnected {stream: "sentences",
grouping: "shuffle"
type: "Local"}]->

(exa)-[:LogicallyConnected {stream: "words",
grouping: "fields"
type: "remote"}]->(exb)

The logical plan can then be queried using these relationships. For example, finding all
the downstream executors from a source, along with their connecting stream name and
groupings, can be done with the following query:

MATCH (source:Executor {component: "BoltA", start_task: 12, end_task: 15}),
(source)-[lc:LogicallyConnected]->(destination:Executor)

RETURN destination, lc.stream, lc.grouping

If you wanted to retrieve the query plan of the topology, this can be done from the logical
plan by returning distinct component names along with the distinct stream and grouping
information.

Tuple flow plan

The tuple flow plan of the topology can be represented by connecting the logically connected
executors with a PhysicallyConnected relationship via the intermediate worker process
hosting the source executor (which can be found using a nested query):

MATCH (source:Executor)-[lc:LogicallyConnected]->(destination:Executor)
WHERE lc.type != "local"
WITH source, lc, destination



C.4. TOPOLOGY STRUCTURE STORAGE AND ANALYSIS 209

MATCH (source)-[:isWithin]->(wp:WorkerProcess)
CREATE (source)-[:PhysicallyConnected]->

(wp)-[:PhysicallyConnected)->(destination)

The paths tuples follow through the topology can now be found by restricting searches to
physically connected relationships.

C.4.3 Constructing the topology graphs

Figure C.2: The tuple flow plan as represented in the Neo4j graph database.

The Cypher queries shown above are simplified examples. Cypher provides much more
efficient ways to bulk create the graph structures described above. These can be seen in
the graph module of the Storm-Tracer code base. However, the basic process involves
first extracting the physical plan representation from the Nimbus API (see section C.3)
and then adding all the worker node, worker process and executor nodes to the graph.
Once this is done, bulk create statements create the various relationships starting with
the physical plan so that properties like whether a logical connection is remote or not can
be inferred by looking at whether executors are on the same worker process and/or worker



210 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

node. Figure C.2 shows what a simple topology looks like when fully constructed with
all the relationships described above. This is from Neo4j’s built in visualisation tool and
shows how even reasonably simple topologies can quickly become difficult to interpret15.
This highlights the advantage of abstracting this complexity to the graph database, rather
than managing it ourselves.

C.5 Modelling Implementation

The author would like to make clear, before going into the details of the system, that they
make no claim to this system being a production ready or performant implementation of a
DSPS modelling system. Nor is this an example of software engineering best practice16.
This is research code that grew organically as various modelling approaches were attempted
and refined. The author would ask that the reader keeps that in mind when reviewing
the code described below. That being said, chapter D details a DSPS performance
modelling system that was, as part of the author’s internship at the social media company
Twitter (the creators of Apache Storm and Heron), built from the ground up to be used in
production environments and implemented many of the lessons learned whilst creating the
Storm-Tracer system.

The Storm-Tracer modelling system is written in Python. This language was chosen for
its ease of use and large eco-system of third party libraries including data manipulation
(pandas17) and scientific (scipy18) libraries as well as ready availability of clients for the
various external systems mentioned above. Storm-Tracer is divided into several modules19

that deal with different aspects of the modelling process and these are broken down into
more detail in the sections below.

C.5.1 Metrics

The metrics module contains classes and functions which can interface with the TSDB
and extract time series or statistical summary information for the various performance
metrics forwarded by the Storm metrics consumer.

15We refer to this as the topology “hairball” plan.
16Indeed, there could be a convincing argument made for the reverse being true.
17https://pandas.pydata.org/
18https://www.scipy.org/
19These modules can be seen in the Storm-Tracer repository available on the digital media attached

to this document. The modules consist of folders containing Python source files which hold the various
functions.

https://pandas.pydata.org/
https://www.scipy.org/


C.5. MODELLING IMPLEMENTATION 211

C.5.2 Graph

The graph module contains functions for interfacing with the Neo4j graph database. There
are methods for constructing graphs of currently running topologies from the data provided
by the Nimbus server and creating graphs of proposed physical plans issued by the Storm
scheduler (via the API module).

C.5.3 API

The API module contains classes and functions for receiving proposed physical plans from
the custom scheduler implementation. The code for this scheduler can be seen in the
repository for the metrics gathering system described in section C.2.2. The scheduler
simply creates a new physical plan using a round-robin approach used by Storm’s default
scheduler, but instead of deploying it will package the plan up as a protocol buffer20 (a
technology similar to Thrift that is used by the Heron DSPS as its internal message passing
system) and send it to an end point associated with the modelling service. The code in
the API module converts the protocol buffer physical plan into a Python object which is
used by the Graph module in creating graphs of the proposed physical plans.

C.5.4 Storm

The storm module contains the Nimbus client interface code described in section C.3. This
also contains a copy of Storm’s Thrift definition file which is used in conjunction with the
thriftpy2 library to access the Nimbus services.

C.5.5 Modelling

The modelling module contains methods which implement the modelling approaches laid
out in chapter 4, including the routing probability, I/O ratio, arrival rate, service time
and incoming tuple list size estimations.

Queue simulation

Both the full user logic thread (ULT) simulation and simplified simulation methods,
described in section 4.2.1, are implemented. The full system simulator uses a Python class
to encapsulate the state described in section B.2 and also provide methods for updating
the state in line with algorithms 1, 2 and 3. A main simulation method then wraps this
class and calls the appropriate state update method according to which random event has
occurred. The simple ULT simulator has a reduced state and so is implemented as a single
method.

20https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/


212 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

The full simulator was used during model development, however simulating each executor
in the topology is a significant bottleneck in the modelling pipeline. As each simulator
is independent from the other, multi-processing allows the set of executors to be shared
between the available cores on whatever machine is running the modelling code. Whilst
this does offer a speed up proportional to the number of cores, the individual simulations
themselves can take a significant amount of time. Therefore, in order to reduce the
simulation time to as short as possible, the simplified simulator was reimplemented in
Cython21. The Cython language is a superset of the Python language that additionally
supports calling C functions and declaring C types. This allows the compiler to generate
very efficient C code from Cython code which is also accessible natively from Python code.
This meant the C version of the simulator could be easily integrated into the rest of the
Python based modelling pipeline.

101 102 103 104 105 106

Number of simulated arrivals

2

4

6

8

10

12

14

Pr
ed

ict
ed

 so
jo

ur
n 

tim
e 

(s
ec

on
ds

)

cython simple
python full
python simple

Figure C.3: Comparison of the predicted sojoun time for the three ULT simulator imple-
mentations.

In order to validate that both the Python and Cython based simplified simulators were
producing results consistent with the full simulator, several comparisons were performed
using the same modelling parameters. The accuracy of the simulator depends greatly on
the number of simulated arrivals, due to the random nature of the event generation within

21https://cython.org/

https://cython.org/


C.5. MODELLING IMPLEMENTATION 213

the simulator and the need for sufficient arrivals to trigger certain internal behaviour.
Figure C.3 shows the output of all three simulator implementations with fixed parameters
and varying numbers of simulated arrivals. This plot clearly shows that all three simulators
produce consistent results and that after approximately 1 million simulated arrivals they
all begin to converge on a constant predicted value. The accuracy of these simulated
results is discussed in chapter 5. The processing time for each of the simulators is shown
in figure C.4 and shows how, despite the fact that these simulators deliver similar results,
the time taken to deliver them is significantly different. The Cython based simulator is
an order of magnitude faster than the pure Python implementation and two orders of
magnitude faster (0.4 sec compared to 23.5) than the full system simulator.

101 102 103 104 105 106

Number of simulated arrivals

10 5

10 4

10 3

10 2

10 1

100

101

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

cython simple
python full
python simple

Figure C.4: Comparison of the average elapsed time to complete the number of simulated
arrivals for the three ULT simulator implementations.

Given the testing shown in the figures above, the Cython based simplified ULT simulator,
with 1 million simulated arrivals, was used in the evaluations described in chapter 5.

Performance

The performance module contains the code which pulls together all the other elements of
the modelling code into single functions which are able to predict the end-to-end latency
of a proposed physical plan. It also contains variations of these methods for predicting



214 APPENDIX C. MODELLING SYSTEM IMPLEMENTATION

the end-to-end latency of a currently running topology physical plan using a different
incoming workload.



Appendix D

Caladrius

D.1 Background

In the summer of 2016 the author attended the Distributed Event Based Systems (DEBS)1

conference in Los Angeles, California. They where there to present their research project
as part of the conference’s Doctoral Symposium (Cooper, 2016).

The keynote speaker at DEBS that year was Karthik Ramasamy2, who at the time was the
Engineering Manager for Twitter’s Real Time Compute team, which handled their stream
processing systems. His talk3 focused on Twitter’s replacement of Apache Storm with a
new system called Heron4. At the end of his talk he listed some continuing challenges
in stream processing engineering, one of which was scaling the Heron topologies to the
correct size to meet the expected incoming workload. Their engineers were spending
days and even weeks tweaking their production topologies. This issue, as outlined in
section 1.2, could be addressed by the approach we were proposing at the conference
(Cooper, 2016). After several months of correspondence with Mr Ramasamy and other
members of the Twitter Real Time Compute team, the author secured a three month
internship at Twitter’s headquarters in San Francisco.

The aim of this internship was to see if the approaches outlined in chapter 4 for Apache
Storm could be used to create a performance modelling system for Heron topologies. The
result of this work was Caladrius, an open source framework for performance modelling of
distributed stream processing systems (DSPSs). Section D.2 gives a brief overview of how
Heron differs from Apache Storm. Section D.3 describes how the differences in operation
between the two systems affect the performance modelling approach. Section D.4 describes
the internal layout and operation of the Caladrius system and section D.5 summarises the

1https://www.ics.uci.edu/~debs2016/
2https://www.linkedin.com/in/kramasamy/
3https://www.ics.uci.edu/~debs2016/keynote-speakers.html#ramasamy
4http://heronstreaming.io

215

https://www.ics.uci.edu/~debs2016/
https://www.linkedin.com/in/kramasamy/
https://www.ics.uci.edu/~debs2016/keynote-speakers.html#ramasamy
http://heronstreaming.io


216 APPENDIX D. CALADRIUS

outcomes and further work on this project.

D.2 Heron Architecture

The Heron DSPS was developed by Twitter as a replacement for Apache Storm, which had
served for many years as the low latency processing aspect of their Lambda Architecture
based data processing system (with Apache Hadoop providing the slower, more accurate
batch processing aspect). Heron was designed to address several shortcomings in Apache
Storm (Kulkarni et al., 2015), namely:

• The highly multi-threaded nature of Storm’s architecture, which makes it very hard
to debug issues and identify which element is the source of a given error. For example,
an exception in a single task (see section 2.4.2) will cause its host executor (see
section 2.4.1) and worker process (see section 2.4.3) to crash along with all the other
executors it hosts. It is also very hard to identify which task within an executor is
the source of a particular error.

• The multi-threaded nature of Storm means that isolating the resource (CPU, RAM,
etc.) usage of a particular task is very difficult.

• Resource allocation can only be performed at the worker process level and is ho-
mogeneous across all worker processes assigned to a topology. This often leads to
over-provisioning of resources as some worker processes will be assigned resources
to cope with the worst case parallelism (being assigned a lot of resource intensive
executors), when they do not require them.

• Storm’s Nimbus control server represents a single point of failure for the system.
Without this node topologies cannot be started, stopped or altered.

• Lack of support for back-pressure, which is a mechanism for telling upstream executors
to stop or slow the flow of tuples to overloaded downstream executors.

• Worker processes with a large number of executors can suffer high contention for the
worker process transfer queue (WPTQ).

Heron was designed to address the above issues by moving away from the highly nested
model (tasks → executors → worker processes) used by Storm. It uses a more isolated
structure, where each executor is within its own operating system (OS) process (referred
to as an instance) and only a small number of these instances are hosted within a
container (the equivalent of Storm’s worker process). The advantage to this is that the
instances provide much better isolation for the purposes of debugging and gauging resource
usage. The use of containers to host the instances also allows finer grained control of
the allocation of resources. Each container runs a Stream Manager process which is
responsible for routing all the traffic into and out of the instances on that container.
Figure D.1 shows an illustration of a simple two container Heron cluster. The arrows



D.2. HERON ARCHITECTURE 217

indicate meta-data/configuration messages and the red indicate tuple transfers. Heron
clusters are designed to be run on modern container orchestration systems (such as Apache
Mesos5 or Kubernetes6) and the typical approach is to use a small number of instances
per container so as not to cause issues with queue contention at the Stream Managers.

Topology 
Master

Stream 
Manager

Metrics 
Manager

Heron 
Instance 

1

Heron 
Instance 

2

Heron 
Instance 

3

Heron 
Instance 

4

Heron 
Instance 

5

Container 1

Stream 
Manager

Metrics 
Manager

Heron 
Instance 

1

Heron 
Instance 

2

Heron 
Instance 

3

Heron 
Instance 

4

Heron 
Instance 

5

Container 2

Zookeeper 
Cluster

Figure D.1: A two container Heron cluster.

D.2.1 Differences to Storm

Heron is backwards compatible with Storm topologies and at a high level many of the
plan types that a topology can be represented as are equivalent. For example, the query
plan and logical plan are the same as for Apache Storm topologies, as is the topology
configuration (with the number of worker processes replaced with the number of assigned
containers). The difference comes at the physical plan level and this also has implications
for the tuple flow plan.

Physical connection types

In Heron every tuple issued by an instance must pass through the stream manager’s queue
and this means there is no direct message passing (local physical connection) between
instances. All tuples must be serialised to be sent to the stream manager and de-serialised
when arriving at the instances. This means there there are only inter-local and remote
physical connections within Heron topology tuple flow plans.

Fields groupings and state

One of the motivations when designing Heron was to simplify the physical elements of the
system and improve the scaling performance of the topologies. To this end, the developers
removed Storm’s state space partitioning via tasks (see section 2.4.2) and simply numbered
each Heron instance when a topology is first deployed and would renumber them whenever

5http://mesos.apache.org/
6https://kubernetes.io/

http://mesos.apache.org/
https://kubernetes.io/


218 APPENDIX D. CALADRIUS

a rebalance (called a topology update in Heron) occurred. These instance numbers were
used, as in Storm, to route tuples with the same field values to the same Heron instances.

The removal of the tasks meant that there was no longer a maximum parallelism limit
(imposed in Storm by the tasks-per-component setting) for Heron topology components,
which was seen as an advantage by Heron’s developers. However, as the instance numbers
are not fixed and can change after a rebalance, this means that the number of destination
instances for a fields grouped connection can change. The implication being that tuples
with a certain field value in a source physical plan cannot be guaranteed to be routed to
the same numbered instance in a proposed physical plan, as the identifier of that instance
may have changed.

This design decision also meant that recovering state after a rebalance or failure —
something trivial in Storm, as all state can be indexed by the persistent task ID — was
much harder. At the time of the author’s internship this was an area of active study by
the Heron developers and there was a suggestion of re-introducing Storm-style task based
state partitioning.

Back-pressure

A key design feature of Heron is its back-pressure system, which is built into the stream
managers that handle communication between the containers that host the Heron instances.
When the queues attached to the Heron instances reach a high watermark, they issue a
message to their host stream manager that they are overloaded. The host stream manager
will then analyse the topology to identify which spouts are feeding this particular instance
and tell them to stop issuing tuples. Once the overloaded Heron instance’s queue drops
below a low watermark the host stream manager will tell the spout to begin issuing tuples
again.

D.3 Modelling Heron

Initially, the goal of the internship was to directly apply the prediction methods developed
for Apache Storm (see chapter 4) to Heron. The aim was to create a prototype service
which was able to intercept a proposed topology physical plan (called packing plans in
Heron) and model its expected performance.

However, as section D.2.1 makes apparent, there are significant differences between how
Heron and Storm handle the partitioning of state and the routing of tuples for fields grouped
connections. These differences mean that the routing probability prediction methods,
described in section 4.5, are not applicable. This is because the routing probabilities
calculated for the instances in a source physical plan cannot be used to predict those in a



D.3. MODELLING HERON 219

proposed physical plan.

At the start of the internship there was some discussion of helping to implement Storm-style
state partitioning for Heron. However, it was decided that this would take longer than the
internship period to complete. Therefore the focus of the project was changed. Instead
of predicting the performance of proposed physical plans, the aim would be to create a
system that could predict the future incoming workload into a running topology and use
this workload to see if it would trigger back-pressure.

The triggering of back-pressure was a significant concern to the users of Heron within
Twitter, as it would often require manual intervention to rectify. Therefore, having a
system that could warn of issues ahead of time, allowing users to configure the topology
to prevent them, was seen as a valuable contribution.

D.3.1 Incoming workload

The advantages to predicting incoming workload for DSPS were laid out in section 1.3.3.
In section 4.3 we described how performing this aspect of the modelling was difficult
for proposed physical plan and would require large amounts of historical data in order
to build accurate models. For our work with Apache Storm we left the prediction of
incoming workload to future research (see section 6.3.2). However, for Heron we were only
concerned with modelling currently running topologies, so predicting the resulting output
due to changes in the parallelism of the spouts was not required. Furthermore, Twitter
had an extensive metrics database, including very large production topologies that had
been running for many months. This provided a wealth of data to aid in the workload
prediction process.

In order to speed up the creation of a viable prototype system, an off the shelf load
prediction package was used. Facebook’s open source Prophet7 software is able to perform
workload predictions using a generalised additive model approach to take account of both
trends and seasonality in time series data (Taylor & Letham, 2018). This was well suited
to the seasonal workloads that Twitter experienced, where users tended to tweet more in
the morning and evening.

For each topology, a Prophet model was trained on the emit-count time series data for
each spout instance. Typically, several days of data were used in order to capture as
much seasonal variation as possible. A forecast of the output from each spout instance,
for several different time horizons, could then be made each with its own measure of
uncertainty in the prediction.

7See: https://facebook.github.io/prophet/

https://facebook.github.io/prophet/


220 APPENDIX D. CALADRIUS

D.3.2 Arrival rates

In order to estimate the effect of a predicted incoming workload on a topology’s instances,
a similar process to the arrival rate prediction method described in section 4.8 was used.
Therefore, predictions of the stream routing probabilities (SRPs) and input to output
(I/O) ratios of each instance were required.

Although the current design of Heron prevented the prediction of the routing probabilities
for proposed physical plans, those for currently running topologies could be calculated
by adding custom metrics to the topologies components that would provide instance-to-
instance transfer counts (the equivalent of the task to task routing probabilities (TRPs) in
Storm). Alternatively, the routing probabilities could be calculated by using a process sim-
ilar to the estimated task output proportion (ETOP) calculations discussed in section 4.5.
However this second method, whilst allowing unmodified topology to be used, would only
work with topologies that did not have consecutive fields grouped connections.

The instance I/O ratios were calculated in a similar manner to that described in section 4.6.
For each output stream of a given instance, a least squares regression approach was used
to create a set of coefficients for the input streams to that instance.

Once the routing probabilities and I/O ratios were calculated, a breadth-first traversal
of the topology’s logical plan was performed and the predicted output from each spout
propagated according to the calculated routing probability and I/O ratio coefficients. This
resulted in a predicted arrival rate at each instance in the topology.

D.3.3 Back-pressure prediction

Once an arrival rate for each instance of the topology was calculated it could be compared
to the service rate of each instance. If any instance had an arrival rate higher than its
service rate, then the Caladrius could raise an alert that back-pressure could be expected.

The service rates, in this case, were calculated by using the median of the service time (based
on the distribution taken over the same time period used for the workload forecasting).
As with the prediction of service times for Storm topologies, described in section 4.9, this
estimation of the service time was subject to the issues of a multi-processing environment.
However, the isolation of the instances within their own OS processes and the fact that
this was not a prediction of service time under a different topology configuration made
this less of a factor.



D.4. CALADRIUS IMPLEMENTATION 221

Figure D.2: The Caladrius modelling system.

D.4 Caladrius Implementation

Caladrius is designed to be a general performance modelling framework for DSPSs. It
provides several services useful for this task including an interface for a graph database,
used to store topology structure information (logical plans, physical plans and tuple flow
plans), and interfaces to metrics databases. It provides base model classes for incoming
workload (traffic) and topology performance predictions.

Caladrius provides a REST API by which a user can request a performance prediction
for a given topology running on a their cluster. Caladrius then handles the modelling
asynchronously and stores the result in a local file or database. Figure D.2 shows a diagram
of the Caladrius system. In its current form it provides modelling and metrics interface
classes for Heron topologies, however modelling classes for other DSPSs can be configured
and the REST endpoints provided.

The code for Caladrius was open sourced by Twitter at the end of the author’s internship
and is currently hosted at: https://github.com/twitter/caladrius

D.5 Outcomes

Caladrius’ performance was validated against several production topologies running on
Twitter’s internal Heron cluster. The workload predictions were validated over several time
horizons, and custom test topologies were used to evaluate the back-pressure predictions.
These custom topologies had instances with very low service rates and under testing they
used artificially high arrival rates to ensure back-pressure occurred.



222 APPENDIX D. CALADRIUS

Unfortunately, due to the workload traces and topology structures being considered as
commercially sensitive information, the results of this evaluation could not be released
outside of Twitter. However, a brief summary was permitted.

Regarding workload prediction, those topologies which were attached to human-facing
systems (those reacting to tweets directly) showed good prediction accuracy due to their
strong seasonality. However, those topologies which were attached to other automated
systems showed poorer results, as these types of machine-to-machine communications
showed workload patterns that were more “bursty” in nature. This bursty pattern was
poorly suited to the modelling approach employed by the Prophet package.

Where the workload predictions were good, the back-pressure predictions showed high
accuracy and a viable prototype alert service was demonstrated for the custom test
topologies.

D.5.1 Further development

After the author finished their internship Twitter was keen to continue the development of
Caladrius. Another intern, a PhD student researching DSPSs, used Caladrius as a base
for an investigation of through-put prediction for Heron topologies. They, the author and
several Heron developers from inside Twitter collaborated on a research paper detailing
this work (Kalim et al., 2019).

The through-put prediction research significantly altered the direction of Cal-
adrius’ development and a fork of the codebase (called Magpie), from the end of
the author’s internship (without any of the later code changes), can be seen at:
https://github.com/tomncooper/magpie

It is the author’s intention to eventually implement model classes and workload predictions,
in Magpie, for Apache Storm using the methods laid out in chapter 4.



Appendix E

Experimental Configurations

The settings for each of the topologies used in the performance modelling evaluation,
described in chapter 5, are shown below. The code for these topologies can be seen in the
StormTimer repository available on the digital media attached to this document or at:

https://github.com/tomncooper/StormTimer

E.1 Fields to Fields

E.1.1 Experimental steps

Table E.1: Parallelism configuration for each step of the fields to fields test topology.

Component Step 0 Step 1 Step 2 Step 3 Step 4

Kafka Spout 1 2 4 8 16
JSON Bolt A 1 2 4 8 16
JSON Bolt B 1 2 4 8 16
Sender Bolt 1 2 4 8 16

E.1.2 Experiments

F2F-1

• Worker nodes: 2
• Worker processes: 4
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 16

223



224 APPENDIX E. EXPERIMENTAL CONFIGURATIONS

F2F-2

• Worker nodes: 4
• Worker processes: 8
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 16

E.2 Multiplier

E.2.1 Experimental steps

Table E.2: Parallelism configuration for each step of the multiplier test topology.

Component Step 0 Step 1 Step 2 Step 3 Step 4

Kafka Spout 1 2 4 8 16
Multiplier JSON Bolt 1 2 4 8 16
Sender Bolt 1 2 4 8 16

E.2.2 Experiments

Multiplier-1

• Worker nodes: 2
• Worker processes: 4
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 16
• Multiplier settings: 10

E.3 Windowed

E.3.1 Experimental steps

Table E.3: Parallelism configuration for each step of the windowed test topology.

Component Step 0 Step 1 Step 2 Step 3 Step 4

Kafka Spout 1 2 4 8 16
Windowed JSON
Bolt

1 2 4 8 16



E.4. ALL-IN-ONE 225

Component Step 0 Step 1 Step 2 Step 3 Step 4

Sender Bolt 1 2 4 8 16

E.3.2 Experiments

Windowed-1

• Worker nodes: 2
• Worker processes: 4
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 16
• Window length (tuples): 10

E.4 All-in-one

E.4.1 Experimental steps

Table E.4: Parallelism configuration for each step of the all-in-one test topology.

Component Step 0 Step 1 Step 2 Step 3 Step 4

Kafka Spout 1 2 4 8 16
Multipler JSON Bolt 1 2 4 8 16
Windowed JSON Bolt 1 2 4 8 16
Sender Bolt 1 2 4 8 16

E.4.2 Experiments

All-In-One-1

• Worker nodes: 3
• Worker processes: 6
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 50
• Multiplier settings (min, max, mean, std): (1, 20, 10, 1.0)
• Window length (tuples): 10



226 APPENDIX E. EXPERIMENTAL CONFIGURATIONS

E.5 Join and split

E.5.1 Experimental steps

Table E.5: Parallelism configuration for each step of the join-split test topology.

Component Step 0 Step 1 Step 2 Step 3 Step 4

Kafka Spout 1 2 4 8 16
JSON Bolt 1 2 4 8 16
Multipler JSON Bolt 1 2 4 8 16
Join-Split Bolt 1 2 4 8 16
Sender Bolt 1 2 4 8 16

E.5.2 Experiments

Fish-1

• Worker nodes: 4
• Worker processes: 8
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 50
• Multiplier settings (min, max, mean, std): (1, 20, 10, 1.0)
• Join window length (tuples): 100
• Join Split Bolt setting: one tuple out per window
• I/O Ratio estimation bucket length (secs): 4

Fish-2

• Worker nodes: 4
• Worker processes: 8
• Tasks per component: 16
• Metric bucket period (secs): 2
• Message input rate (mps): 50
• Multiplier settings (min, max, mean, std): (1, 20, 10, 1.0)
• Join window length (secs): 2
• Join Split Bolt setting: Stream 3 if input stream counts are both even or both odd

Stream 4 otherwise.
• I/O Ratio estimation bucket length (secs): 4


	Glossary
	Introduction
	Distributed Stream Processing
	Topology Scaling Decisions
	Model-Based Scaling Decisions
	Faster convergence on a valid plan
	Feedback for decisions
	Pre-emptive scaling
	N-version scaling

	Summary
	Research aims

	Thesis Structure
	Related Publications

	Distributed Stream Processing Architecture
	Choosing an Example System
	Apache Storm Overview
	Background
	Overview

	Storm Elements
	Storm cluster
	Topology

	Parallelism in Storm
	Executors
	Tasks
	Worker processes

	Stream Groupings
	Topology Plans
	Query plan
	Configuration
	Logical plan
	Physical plan

	Internal Queues
	Overview
	Queue input
	Arrival into the queue
	Timer flush interval completes
	Service completes

	Tuple Flow
	Executor tuple flow
	Worker process tuple flow

	Guaranteed Message Processing
	Acker
	Tuple tree

	Topology Scheduling
	Rebalancing
	Worker processes
	Executors
	Tasks

	Windowing
	Tumbling windows
	Sliding windows
	Windowing in Apache Storm

	Storm Metrics
	Accessing metrics
	Component metrics
	Queue metrics
	Custom metrics
	Metrics sample rates

	Summary

	Related Work
	Threshold Based Auto-scaling
	Performance Model Based Auto-scaling
	Queueing theory
	Machine learning
	Other approaches

	Summary

	Topology Performance Modelling
	Performance Modelling Procedure
	Modelling the topology
	Tuple flow plan
	Elements to be modelled

	Executor Latency Modelling
	Queue simulation
	Executor simulator

	Incoming Workload
	Routing Probabilities
	Stream routing probability
	Global routing probabilities

	Predicting Routing Probabilities
	Predicting stream routing probabilities
	Predicting global routing probabilities

	Input to Output Ratios
	Calculating input to output coefficients for source physical plans

	Predicting Input to Output Ratios
	Input streams containing only shuffle groupings
	Input streams containing at least one fields grouping

	Arrival Rates
	Predicting executor arrival rates
	Predicting worker process arrival rates

	Service Times
	Executor co-location effects on service time

	Predicting Service Times
	Weighted average service time

	Transfer Latencies
	Predicting transfer times

	Tuples Per Input List
	Processing batch size estimation
	Transfer list size estimation
	Input list size estimation

	End-to-end Latency
	Windowing delay
	Executor send thread
	Worker process send thread
	Worker process receiving logic
	Predicting complete latency

	Summary

	Evaluation
	Modelling System Implementation
	Evaluation System
	Data gathering

	Example Use Cases
	Linear 
	Join and split topology
	Test summary
	Test configuration
	Evaluation process

	Arrival Rates
	Stream routing probabilities
	Input/Output ratios
	Executor arrival rates

	Service Times
	Tuple Input List Size
	End-to-end Latency
	Ground truth latency
	Validation process
	Results

	Summary
	Arrival rate
	Service time
	Tuple input list size
	End-to-end latency
	Factors undermining prediction accuracy
	Conclusion


	Discussion
	Thesis Summary
	Chapter — Introduction
	Chapter — Apache Storm architecture
	Chapter — Related work
	Chapter — Modelling approach
	Chapter — Evaluation

	Summary of Contributions
	Future Research
	Additional metrics
	Workload prediction
	Routing key distribution
	Service time prediction
	Serialisation delay
	Network transfer time
	Analytical solution
	Resource usage
	Hybrid approach
	Estimation of error
	Other 

	Conclusion

	Bibliography
	Queuing Theory Primer
	Queueing Theory Notation
	Queue Categorisation

	Executor Simulator Implementation
	Simulation Process
	Full System Simulator
	Tuple list arrival
	Flush interval completes
	Tuple completes service
	Continuous flush operation

	Simplified System Simulator
	Tuple list arrival
	Flush interval completes
	Tuple completes service

	Comparison of Simulators

	Modelling System Implementation
	Storm-Tracer system overview
	Metrics Gathering and Storage
	Time series database
	Custom metrics
	Cluster metrics

	Interacting with Nimbus
	Topology Structure Storage and Analysis
	Graph database
	Topology graph structure
	Constructing the topology graphs

	Modelling Implementation
	Metrics
	Graph
	API
	Storm
	Modelling


	Caladrius
	Background
	Heron Architecture
	Differences to Storm

	Modelling Heron
	Incoming workload
	Arrival rates
	Back-pressure prediction

	Caladrius Implementation
	Outcomes
	Further development


	Experimental Configurations
	Fields to Fields
	Experimental steps
	Experiments

	Multiplier
	Experimental steps
	Experiments

	Windowed
	Experimental steps
	Experiments

	All-in-one
	Experimental steps
	Experiments

	Join and split
	Experimental steps
	Experiments



